Credits: 5

Schedule: 21.02.2017 - 30.03.2017

Teaching Period (valid 01.08.2018-31.07.2020): 

I Autumn (2018-2019)

Only exam (2019-2020)


Learning Outcomes (valid 01.08.2018-31.07.2020): 

You will learn how the finite element method is applied for problems which are constrained minimization problems with a Lagrange multiplier.


Content (valid 01.08.2018-31.07.2020): 

General variational problems. The finite element theory for approximating saddle-point problems. Applications to Stokes equations.


Assessment Methods and Criteria (valid 01.08.2018-31.07.2020): 



Workload (valid 01.08.2018-31.07.2020): 



Study Material (valid 01.08.2018-31.07.2020): 

Larson, Mats G.; Bengzon, Fredrik. The finite element method: theory, implementation, and applications. Texts in Computational Science and Engineering, 10. Springer, Heidelberg, 2013.


Substitutes for Courses (valid 01.08.2018-31.07.2020): 



Course Homepage (valid 01.08.2018-31.07.2020):

Prerequisites (valid 01.08.2018-31.07.2020): 

MS-E1653 Finite element method (5 cr).


Grading Scale (valid 01.08.2018-31.07.2020):