Credits: 5

Schedule: 11.09.2017 - 20.10.2017

Teaching Period (valid 01.08.2018-31.07.2020): 

I Autumn (2018-2019)

II Autumn (2019-2020)


Learning Outcomes (valid 01.08.2018-31.07.2020): 

The students will after the course understand the basic invariants of graphs and how they are related by regularity and structural graph theory.


Content (valid 01.08.2018-31.07.2020): 

Basic properties as connectivity, planarity and minor containment both in the deterministic and random setting. The Szemerédi regularity lemma, graph homomorphisms and graph limits; the graph minor theorem and the strong perfect graph theorem.


Assessment Methods and Criteria (valid 01.08.2018-31.07.2020): 

Homework, possibly an exam.

Workload (valid 01.08.2018-31.07.2020): 

Lectures and tutored problem solving 36h (3x2h/week, 6 weeks), self-study about 100h.


Study Material (valid 01.08.2018-31.07.2020): 

Graph Theory, Diestel, 4th edition; Large Networks and Graph Limits, Lovász.


Substitutes for Courses (valid 01.08.2018-31.07.2020): 



Course Homepage (valid 01.08.2018-31.07.2020):

Prerequisites (valid 01.08.2018-31.07.2020): 

Mathematical maturity comparable to a bachelor in computer science, mathematics or operational research.


Grading Scale (valid 01.08.2018-31.07.2020):