Credits: 5

Schedule: 20.02.2018 - 29.03.2018

Teaching Period (valid 01.08.2018-31.07.2020): 

Not lectured (2018-2019)

IV Spring (2019-2020)

Lectured every other year


Learning Outcomes (valid 01.08.2018-31.07.2020): 

To understand at an operative level the concepts of Galois extension and Galois correspondence. Ability to solve equations with algebraic methods.

Content (valid 01.08.2018-31.07.2020): 

Field extensions, simple extensions, extension degree, normality and separability, field automorphisms, Galois groups, Galois correspondence, solubility and simplicity, impossibility of solving a 5th or higher degree polynomial by radicals.


Assessment Methods and Criteria (valid 01.08.2018-31.07.2020): 

Lectures, written exercises, possibility for an oral exam if needed.


Workload (valid 01.08.2018-31.07.2020): 

24h lectures + 12h exercises (4h+2h / week) + ca. 100h of self-study


Study Material (valid 01.08.2018-31.07.2020): 

 Ian Stewart: Galois Theory, 3rd edition.


Substitutes for Courses (valid 01.08.2018-31.07.2020): 



Course Homepage (valid 01.08.2018-31.07.2020):

Prerequisites (valid 01.08.2018-31.07.2020): 

MS-C1081 Abstract Algebra or similar.


Grading Scale (valid 01.08.2018-31.07.2020):