### MS-A0311 - Differential and integral calculus 3, 16.04.2019-29.05.2019

Laajuus: 5

Aikataulu: 16.04.2019 - 29.05.2019

Opetusperiodi (voimassa 01.08.2018-31.07.2020):

V Spring (2018-2019)

IV Spring (2019-2020)

Osaamistavoitteet (voimassa 01.08.2018-31.07.2020):

After the course the student will be able to

- evaluate multiple integrals in cartesian, cylindrical and spherical coordinates,

- analyze the properties of vector fields,

- evaluate line and surface integrals of vector fields,

- calculate the gradient, divergence and curl, and knows what they represent,

- explain the idea of Gauss’ and Stokes’ theorems, and apply them in calculations.

Sisältö (voimassa 01.08.2018-31.07.2020):

Change of variables in multiple integrals, integration in cylindrical and spherical coordinates, vector fields, line and surface integrals, gradient, divergence, curl, Gauss’s, Green’s and Stokes’ theorems.

Toteutus, työmuodot ja arvosteluperusteet (voimassa 01.08.2018-31.07.2020):

Lectures, exercises, midterm exams/final exam.

Työmäärä toteutustavoittain (voimassa 01.08.2018-31.07.2020):

24+24 (4+4)

Tarkennukset oppimateriaaliin (koskee tätä kurssikertaa): Course book:

*Calculus, A Complete Course,* Adams and Essex, 8th edition (You can also use earlier editions of the book. However, the section numbering in earlier editions may be different from the 8th edition.)

Korvaavuudet (voimassa 01.08.2018-31.07.2020):

Together with the course MS-A02XX substitutes the courses Mat-1.1020, Mat-1.1220, Mat-1.1320, Mat-1.1420, Mat-1.1520, Mat-1.1620, Mat-1.1720.

Substitutes the courses MS-A03XX Differential and integral calculus 3, MSA0310 Mathematics 2.

https://mycourses.aalto.fi/course/search.php?search=MS-A0311

Esitiedot (voimassa 01.08.2018-31.07.2020):

MS-A02XX Differential and integral calculus 2.

Arvosteluasteikko (voimassa 01.08.2018-31.07.2020):

0-5

Toteutuksen lisätiedot (koskee tätä kurssikertaa): Tentative plan for lectures

- Lectures 1 - 2 (Chapter 14 in the book)
- Lectures 3 - 4 (Ch 15.1 - 4)
- Lectures 5 - 6 (Ch 15. 5 - 6, Ch 16.1 - 2)
- Lectures 7 - 8 (Ch 16.3 - 4)
- Lectures 9 - 10 (Ch 16.5 - 6)
- Lectures 11 - 12 (Ch 16.7, Review)