Credits: 5

Schedule: 25.02.2019 - 10.04.2019

Teaching Period (valid 01.08.2018-31.07.2020): 

IV Spring (2018-2019, 2019-2020)

Learning Outcomes (valid 01.08.2018-31.07.2020): 

After passing the course the student will be able to

- justify the essential properties of Fourier transforms

- calculate easy Fourier transforms by hand

- connect the theory of Fourier transforms to practical applications in signal processing

- use computer in Fourier analysis of real-life signals.

Content (valid 01.08.2018-31.07.2020): 

Fourier integral, Fourier series, discrete Fourier transform and FFT.

Windowed Fourier transform and spectrogram.

Applications in signal processing.

Assessment Methods and Criteria (valid 01.08.2018-31.07.2020): 

Lectures, exercises, exam.

Workload (valid 01.08.2018-31.07.2020): 

24+24 (4+4).

Substitutes for Courses (valid 01.08.2018-31.07.2020): 

Substitutes the courses Mat-1.1131, Mat-1.1331, Mat-1.1531, Mat-1.1631, MS-C1420.

Together with the course MS-C1340/MS-C1342 or the course MS-C1300 substitutes the course Mat-1.1230.

Course Homepage (valid 01.08.2018-31.07.2020):

Prerequisites (valid 01.08.2018-31.07.2020): 

MS-A01XX Differential and integral calculus 1, MS-A00XX Matrix algebra.

Grading Scale (valid 01.08.2018-31.07.2020): 



Registration and further information