Credits: 5


Date and timePlace

Teaching Period (valid 01.08.2018-31.07.2020): 

IV (Spring)

Learning Outcomes (valid 01.08.2018-31.07.2020): 

Be able to formulate a wide variety of optimization problems in integer and binary variables. Explain, interpret, and compare the most important families of algorithms in the general case and in special cases. Discuss the concept of complexity theory and relate it with the topics of the course.

Content (valid 01.08.2018-31.07.2020): 

Optimization problems including integer variables together with most common algorithms: branch and bound, cutting plane, dynamic programming, approximation and heuristics. Complexity analysis. Dual problem and its relation to the network problem. Lagrangian relaxation. Column generation algorithms.

Assessment Methods and Criteria (valid 01.08.2018-31.07.2020): 

Exam, assignment and home exercises

Study Material (valid 01.08.2018-31.07.2020): 

Laurence A. Wolsey: Integer Programming, Wiley-Interscience Publication, 1998.

Substitutes for Courses (valid 01.08.2018-31.07.2020): 

Mat-2.4146 Integer Programming P

Course Homepage (valid 01.08.2018-31.07.2020):

Prerequisites (valid 01.08.2018-31.07.2020): 

MS-E2140 Linear Programming


Registration and further information