Siirry pääsisältöön
MyCourses MyCourses
  • Koulut
    Insinööritieteiden korkeakoulu (ENG) Kauppakorkeakoulu (BIZ) Kemian tekniikan korkeakoulu (CHEM) – Oppaita opiskelijalle (CHEM) – Raportinkirjoitusohje (CHEM) Perustieteiden korkeakoulu (SCI) Sähkötekniikan korkeakoulu (ELEC) Taiteiden ja suunnittelun korkeakoulu (ARTS) Kielikeskus Avoin yliopisto Kirjasto Aalto-yliopiston pedagoginen koulutus UNI (tentit) Sandbox
  • CORONAVIRUS INFO
    Koronavirus - tietoa opiskelijalle Coronavirus - information for students Coronavirus - information för studerande Koronaviruksen vaikutus opiskeluun: kysymyksiä ja vastauksia Effects of the coronavirus on studies: questions and answers Coronaviruset och studierna: frågor och svar Corona help for teachers
  • Palvelulinkit
    MyCourses - Ohjeita opettajille - Varaa online aika digitaalisen opetuksen asiantuntijalta (opetttajille) - Opetuksen digitaaliset työvälineet - Opetuksen tietosuojaa opettajille - Ohjeita opiskelijoille - Työtila opinnäyteohjaukseen WebOodi Into-opiskelijaportaali Courses.aalto.fi Kirjasto- ja tietopalvelut - Tiedonhakijan oppaat - Imagoa / Avoin tiede ja kuvien käyttö Tietotekniikkapalvelut Kampuskartat - Etsi tiloja ja tarkista rakennusten aukioloajat Ruokalistat.net AYY Aalto-yliopiston ylioppilaskunta Aallon yhteisötori
  • ALLWELL?
    Opiskelutaidot Tukea opiskeluun Starting Point of Wellbeing AllWell?-opiskeluhyvinvointikyselystä
  •   ‎(fi)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Käytät vierailijatunnusta (Kirjaudu)

close

CS-E4890 - Deep Learning, 26.02.2019-31.05.2019

  1. Etusivu
  2. Kurssit
  3. perustieteide...
  4. tietotekniika...
  5. cs-e4890 - de...
Kurssiesite

Yleinen

  • Yleinen

    Yleinen

    • Contents: Machine learning with deep neural networks. Programming using PyTorch.

    After the course, the student understands the basic principles of deep learning: fully-connected, convolutional and recurrent neural networks; stochastic gradient descent and backpropagation; means to prevent overfitting. The student understands how to do supervised learning (classification and regression) and unsupervised learning with neural networks. The student knows modern neural architectures used for image classification, time series modeling and natural language processing. The student has experience on training deep learning models in PyTorch.

    • Assessment: Exercises, a project work and an exam.

    • Prerequisites: Basics of machine learning, basics of probability and statistics, good level of programming in Python. Recommended: matrix algebra.
    Basic terms of machine learning:
      • supervised and unsupervised learning
      • overfitting and underfitting
      • regularization
    Basic terms of probability theory:
      • sum, product rule, Bayes' rule
      • expectation, mean, variance, median
    • Course contents:
      • Introduction and history of deep learning
      • Optimization for training deep models
      • Regularization for deep learning
      • Convolutional networks
      • Recurrent neural networks
      • Unsupervised learning with deep autoencoders and generative adversarial networks


    • icon for activity Announcements Keskustelualue
    • icon for activity Yleinen keskustelu Keskustelualue

Kurssin etusivu

Kurssin etusivu

Seuraava osio

Materiaalit►
Ohita
Tulevat tapahtumat
Ladataan Ei tulevia tapahtumia
Siirry kalenteriin...
  • CS-E4890 - Deep Learning, 26.02.2019-31.05.2019
  • Osiot
  • Yleinen
  • Materiaalit
  • Tehtävät
  • Project work
  • Etusivu

Aalto logo

Tuki / Support
  • MyCourses help
  • mycourses(at)aalto.fi
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten

Käytät vierailijatunnusta (Kirjaudu)
  • Koulut
    • Insinööritieteiden korkeakoulu (ENG)
    • Kauppakorkeakoulu (BIZ)
    • Kemian tekniikan korkeakoulu (CHEM)
    • – Oppaita opiskelijalle (CHEM)
    • – Raportinkirjoitusohje (CHEM)
    • Perustieteiden korkeakoulu (SCI)
    • Sähkötekniikan korkeakoulu (ELEC)
    • Taiteiden ja suunnittelun korkeakoulu (ARTS)
    • Kielikeskus
    • Avoin yliopisto
    • Kirjasto
    • Aalto-yliopiston pedagoginen koulutus
    • UNI (tentit)
    • Sandbox
  • CORONAVIRUS INFO
    • Koronavirus - tietoa opiskelijalle
    • Coronavirus - information for students
    • Coronavirus - information för studerande
    • Koronaviruksen vaikutus opiskeluun: kysymyksiä ja vastauksia
    • Effects of the coronavirus on studies: questions and answers
    • Coronaviruset och studierna: frågor och svar
    • Corona help for teachers
  • Palvelulinkit
    • MyCourses
    • - Ohjeita opettajille
    • - Varaa online aika digitaalisen opetuksen asiantuntijalta (opetttajille)
    • - Opetuksen digitaaliset työvälineet
    • - Opetuksen tietosuojaa opettajille
    • - Ohjeita opiskelijoille
    • - Työtila opinnäyteohjaukseen
    • WebOodi
    • Into-opiskelijaportaali
    • Courses.aalto.fi
    • Kirjasto- ja tietopalvelut
    • - Tiedonhakijan oppaat
    • - Imagoa / Avoin tiede ja kuvien käyttö
    • Tietotekniikkapalvelut
    • Kampuskartat
    • - Etsi tiloja ja tarkista rakennusten aukioloajat
    • Ruokalistat.net
    • AYY Aalto-yliopiston ylioppilaskunta
    • Aallon yhteisötori
  • ALLWELL?
    • Opiskelutaidot
    • Tukea opiskeluun
    • Starting Point of Wellbeing
    • AllWell?-opiskeluhyvinvointikyselystä
  •   ‎(fi)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎