Skip to main content
MyCourses MyCourses
  • Schools
    School of Arts, Design, and Architecture (ARTS) School of Business (BIZ) School of Chemical Engineering (CHEM) –sGuides for students (CHEM) – Instructions for report writing (CHEM) School of Electrical Engineering (ELEC) School of Engineering (ENG) School of Science (SCI) Language Centre Open University Library Aalto university pedagogical training program UNI (exams) Sandbox
  • Service Links
    MyCourses - MyCourses instructions for Teachers - MyCourses instructions for Students - Teacher book your online session with a specialist - Digital tools for teaching - Personal data protection instructions for teachers - Workspace for thesis supervision Sisu Student guide Courses.aalto.fi Library Services - Resourcesguides - Imagoa / Open science and images IT Services Campus maps - Search spaces and see opening hours Restaurants in Otaniemi ASU Aalto Student Union Aalto Marketplace
  • ALLWELL?
    Study Skills Guidance and support for students Starting Point of Wellbeing About AllWell? study well-being questionnaire
  •   ‎(en)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Hi guest! (Log in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

ELEC-E8105 - Non-linear Filtering and Parameter Estimation P, 08.01.2020-08.04.2020

This course space end date is set to 08.04.2020 Search Courses: ELEC-E8105

  1. Home
  2. Courses
  3. school of ele...
  4. department of...
  5. elec-e8105 - ...
 
Syllabus
 

General

  • General

    General

    Lecturers:
    Prof. Simo Särkkä (simo.sarkka@aalto.fi).

    Co-lecturers / assistants:
    M.Sc. Zheng Zhao (zheng.zhao@aalto.fi)

    Please add "ELEC-E8105" to subject when sending mail concerning the course.

    Learning Outcomes:
    The student understands the Bayesian basis of estimation in non-linear and non-Gaussian systems. The student understands the principles behind approximate filters and smoothers, and is able to use them in practice. Student knows how to estimate parameters online and offline in non-linear systems.

    Contents:
    Statistical modeling and estimation of non-linear and non-Gaussian systems. Bayesian filtering and smoothing theory. Extended Kalman filtering and smoothing, sigma-point and unscented filtering and smoothing, sequential Monte Carlo particle filtering and smoothing. Adaptive non-linear filtering; ML, MAP, MCMC, and EM estimation of system parameters. Example applications from navigation, remote surveillance, and time series analysis.

    Assessment Methods and Criteria:
    Final exam, home exercises, and project work. The grade of the course is the maximum of the grades of the examination and project work. You need to pass both the examination and the project work to pass the course. To pass the course, you also need to do at least 1/2 of the home exercises. Furthermore if you do (at least) 3/4 of the exercises, your grade increases by one (1 -> 2, 2 -> 3, 3 -> 4, 4 -> 5).


    Study Material:
    Simo Särkkä: Bayesian Filtering and Smoothing (2013) http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf, handouts.

    Course Homepage:
    https://mycourses.aalto.fi/course/view.php?id=24745

    Prerequisites:
    Basics of Bayesian inference, multivariate calculus and matrix algebra. Basic knowledge or ability to learn to use Matlab or Octave is needed for completing the exercises. "ELEC-E8740 Basics of sensor fusion" is recommended, and "CS-E5710 Bayesian data analysis" can be useful.

    Grading Scale: 0-5

    Language:
    The course will be taught in English in spring 2020.


    • icon for activity
      ForumAnnouncements Forum
    • icon for activity
      ForumGeneral discussion Forum

Course home

Course home

Next section

Schedule►
Skip Upcoming events
Upcoming events
Loading There are no upcoming events
Go to calendar...
  • ELEC-E8105 - Non-linear Filtering and Parameter Estimation P, 08.01.2020-08.04.2020
  • Sections
  • General
  • Schedule
  • Materials
  • Exercises
  • Project
  • For Aalto users
  • Exam 8.4.2020
  • Home
  • Calendar
  • Learner Metrics

Aalto logo

Tuki / Support
Opiskelijoille / Students
  • MyCourses instructions for students
  • email: mycourses(at)aalto.fi
Opettajille / Teachers
  • MyCourses help
  • MyTeaching Support form
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Hi guest! (Log in)
  • Schools
    • School of Arts, Design, and Architecture (ARTS)
    • School of Business (BIZ)
    • School of Chemical Engineering (CHEM)
    • –sGuides for students (CHEM)
    • – Instructions for report writing (CHEM)
    • School of Electrical Engineering (ELEC)
    • School of Engineering (ENG)
    • School of Science (SCI)
    • Language Centre
    • Open University
    • Library
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • Service Links
    • MyCourses
    • - MyCourses instructions for Teachers
    • - MyCourses instructions for Students
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Personal data protection instructions for teachers
    • - Workspace for thesis supervision
    • Sisu
    • Student guide
    • Courses.aalto.fi
    • Library Services
    • - Resourcesguides
    • - Imagoa / Open science and images
    • IT Services
    • Campus maps
    • - Search spaces and see opening hours
    • Restaurants in Otaniemi
    • ASU Aalto Student Union
    • Aalto Marketplace
  • ALLWELL?
    • Study Skills
    • Guidance and support for students
    • Starting Point of Wellbeing
    • About AllWell? study well-being questionnaire
  •   ‎(en)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎