Gå direkt till huvudinnehåll
MyCourses MyCourses
  • Högskolor
    Handelshögskolan (BIZ) Högskolan för elektroteknik (ELEC) Högskolan för ingenjörsvetenskaper (ENG) Högskolan för kemiteknik (CHEM) – Andra guider (CHEM) – Anvisning för literaturarbeten (CHEM) Högskolan för konst, design och arkitektur (ARTS) Högskolan för teknikvetenskaper (SCI) Andra studier Språkcentret Open University Biblioteket Aalto university pedagogical training program UNI (exams) Sandbox
  • Länkar till tjänster
    MyCourses - MyCourses instructions for Teachers - Anvisningar för studerande - Teacher book your online session with a specialist - Digital tools for teaching - Data protection instructions for teachers - Workspace for thesis supervision Sisu Studentguide Courses.aalto.fi Unverisitets bibliotek - Resourcesguides - Imagoa / Öppen vetenskap och användning av bilder IT-tjänster Campus - Byggnads öppettider Restaurants in Otaniemi AUS Aalto-universitetets studentkår Aalto Marketplace
  • ALLWELL?
    Studiekompetens Vägledning och stöd för studerande Starting Point of Wellbeing Om AllWell? -enkäten
  •   ‎(sv)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Du är för tillfället inloggad som gästanvändare (Logga in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

ELEC-E8105 - Non-linear Filtering and Parameter Estimation P, 08.01.2020-08.04.2020

This course space end date is set to 08.04.2020 Search Courses: ELEC-E8105

  1. Framsida
  2. Kurser
  3. högskolan f?...
  4. elektroteknik...
  5. elec-e8105 - ...
 
Kursens beskrivning
 

Allmänt

  • Allmänt

    Allmänt

    Lecturers:
    Prof. Simo Särkkä (simo.sarkka@aalto.fi).

    Co-lecturers / assistants:
    M.Sc. Zheng Zhao (zheng.zhao@aalto.fi)

    Please add "ELEC-E8105" to subject when sending mail concerning the course.

    Learning Outcomes:
    The student understands the Bayesian basis of estimation in non-linear and non-Gaussian systems. The student understands the principles behind approximate filters and smoothers, and is able to use them in practice. Student knows how to estimate parameters online and offline in non-linear systems.

    Contents:
    Statistical modeling and estimation of non-linear and non-Gaussian systems. Bayesian filtering and smoothing theory. Extended Kalman filtering and smoothing, sigma-point and unscented filtering and smoothing, sequential Monte Carlo particle filtering and smoothing. Adaptive non-linear filtering; ML, MAP, MCMC, and EM estimation of system parameters. Example applications from navigation, remote surveillance, and time series analysis.

    Assessment Methods and Criteria:
    Final exam, home exercises, and project work. The grade of the course is the maximum of the grades of the examination and project work. You need to pass both the examination and the project work to pass the course. To pass the course, you also need to do at least 1/2 of the home exercises. Furthermore if you do (at least) 3/4 of the exercises, your grade increases by one (1 -> 2, 2 -> 3, 3 -> 4, 4 -> 5).


    Study Material:
    Simo Särkkä: Bayesian Filtering and Smoothing (2013) http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf, handouts.

    Course Homepage:
    https://mycourses.aalto.fi/course/view.php?id=24745

    Prerequisites:
    Basics of Bayesian inference, multivariate calculus and matrix algebra. Basic knowledge or ability to learn to use Matlab or Octave is needed for completing the exercises. "ELEC-E8740 Basics of sensor fusion" is recommended, and "CS-E5710 Bayesian data analysis" can be useful.

    Grading Scale: 0-5

    Language:
    The course will be taught in English in spring 2020.


    • icon for activity
      ForumAnnouncements Forum
    • icon for activity
      ForumAllmän diskussion Forum

Course home

Course home

Nästa sektion

Schedule►
Hoppa över Kommande händelser
Kommande händelser
Laddar
Sitehändelse MyCourses maintenance, service out of use
Monday, 12 June, 10:00 » 17:00

Gå till Kalender
  • ELEC-E8105 - Non-linear Filtering and Parameter Estimation P, 08.01.2020-08.04.2020
  • Sektioner
  • Allmänt
  • Schedule
  • Material
  • Exercises
  • Project
  • För Aalto
  • Exam 8.4.2020
  • Framsida
  • Kalender
  • Learner Metrics

Aalto logo

Tuki / Support
Opiskelijoille / Students
  • MyCourses instructions for students
  • email: mycourses(at)aalto.fi
Opettajille / Teachers
  • MyCourses help
  • MyTeaching Support form
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Du är för tillfället inloggad som gästanvändare (Logga in)
  • Högskolor
    • Handelshögskolan (BIZ)
    • Högskolan för elektroteknik (ELEC)
    • Högskolan för ingenjörsvetenskaper (ENG)
    • Högskolan för kemiteknik (CHEM)
    • – Andra guider (CHEM)
    • – Anvisning för literaturarbeten (CHEM)
    • Högskolan för konst, design och arkitektur (ARTS)
    • Högskolan för teknikvetenskaper (SCI)
    • Andra studier
    • Språkcentret
    • Open University
    • Biblioteket
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • Länkar till tjänster
    • MyCourses
    • - MyCourses instructions for Teachers
    • - Anvisningar för studerande
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Data protection instructions for teachers
    • - Workspace for thesis supervision
    • Sisu
    • Studentguide
    • Courses.aalto.fi
    • Unverisitets bibliotek
    • - Resourcesguides
    • - Imagoa / Öppen vetenskap och användning av bilder
    • IT-tjänster
    • Campus
    • - Byggnads öppettider
    • Restaurants in Otaniemi
    • AUS Aalto-universitetets studentkår
    • Aalto Marketplace
  • ALLWELL?
    • Studiekompetens
    • Vägledning och stöd för studerande
    • Starting Point of Wellbeing
    • Om AllWell? -enkäten
  •   ‎(sv)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎