Gå direkt till huvudinnehåll
MyCourses MyCourses
  • Högskolor
    Handelshögskolan (BIZ) Högskolan för elektroteknik (ELEC) Högskolan för ingenjörsvetenskaper (ENG) Högskolan för kemiteknik (CHEM) – Andra guider (CHEM) – Anvisning för literaturarbeten (CHEM) Högskolan för konst, design och arkitektur (ARTS) Högskolan för teknikvetenskaper (SCI) Andra studier Språkcentret Open University Biblioteket Aalto university pedagogical training program UNI (exams) Sandbox
  • Länkar till tjänster
    MyCourses - MyCourses instructions for Teachers - Anvisningar för studerande - Teacher book your online session with a specialist - Digital tools for teaching - Data protection instructions for teachers - Workspace for thesis supervision Sisu Studentguide Courses.aalto.fi Unverisitets bibliotek - Resourcesguides - Imagoa / Öppen vetenskap och användning av bilder IT-tjänster Campus - Byggnads öppettider Restaurants in Otaniemi AUS Aalto-universitetets studentkår Aalto Marketplace
  • ALLWELL?
    Studiekompetens Vägledning och stöd för studerande Starting Point of Wellbeing Om AllWell? -enkäten
  •   ‎(sv)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Du är för tillfället inloggad som gästanvändare (Logga in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

ELEC-E8740 - Basics of sensor fusion, 09.09.2019-09.12.2019

This course space end date is set to 09.12.2019 Search Courses: ELEC-E8740

  1. Framsida
  2. Kurser
  3. högskolan f?...
  4. elektroteknik...
  5. elec-e8740 - ...
 
Kursens beskrivning
 

Allmänt

  • Allmänt

    Allmänt

    Welcome to the course Basics of Sensor Fusion.

    Lectures

    Main lecturer Prof. Simo Särkkä (simo.sarkka@aalto.fi), Office F305, Rakentajanaukio 2
    Secondary lecturer Dr. Muhammad Emzir (muhammad.emzir@aalto.fi), Office F307, Rakentajanaukio 2

    Office hours: Please send an email to book an appointment.

    Exercises and Project work

    Dr. Muhammad Emzir (muhammad.emzir@aalto.fi), Office F307, Rakentajanaukio 2

    Office hours: Please send an email to book an appointment.

    Intended Learning Outcomes

    After successfully completing this course, the participants are able to:

    • explain the principles and components of sensor fusion systems,
    • identify and explain the differences between linear and nonlinear models and their implications on sensor fusion,
    • construct models of multi-sensor systems and use least-squares algorithms for sensor fusion
    • construct continuous- and discrete-time state-space models based on ordinary differential equations, difference equations, and physical sensor models,
    • develop and compare state-space models and Kalman as well as particle filtering algorithms for solving sensor fusion problems.

    Assessment Methods and Criteria

    Achievement of the intended learning outcomes is assessed through an individual written exam as well as a group project work.

    To pass the course, you need to:

    • pass the written exam,
    • pass the project,
    • actively participate in exercises.

    Written exam: The written exam is a pen and paper exam. Allowed aids:

    • One (1) hand-written A4 paper with notes (written by yourself, i.e., not written w/ computer, not copied from your peers, etc.)
    • Pens
    • Calculator
    • No lecture notes, books, etc.

    The grading scale for both the exam and the project is 0-5. The final grade is the average of the written exam and the project.

    Study Material

    The course is mainly based on lecture notes and handouts that will be made available on the course homepage. Optionally, the students may also purchase the textbook "Statistical Sensor Fusion" by F. Gustafsson (not mandatory).

    Prerequisites

    Basic knowledge of linear algebra, mathematical statistics, and calculus is required. Knowledge of signals and systems, estimation theory, and electronics may come in handy but is not required.

    Schedule

    Lectures: Lectures are held on Wednesdays, 14:15 - 16:00 (except for the first lecture on Monday, Sep 9, 2019, 14:15 - 16:00) in F175b, Health Technology House, Otakaari 3.

    Preliminary schedule (may be subject to changes):

    Date
    Topic
    Recommended Reading (Lecture Notes)
    9.9.
    Course Overview and Introduction to Sensor Fusion
    Chapter 1
    11.9.
    Sensors, Models, and Least Squares Criterion
    Chapter 2
    18.9.
    Static Linear Models and Linear Least Squares
    Chapter 3
    25.9.
    Static Nonlinear Models, Gradient Descent, and Gauss-Newton
    Chapter 4, Sections 4.1-4.3
    2.10.
    Gauss-Newton with Line Search and Levenberg-Marquardt Algorithm
    Chapter 4, Sections 4.4-4.8
    9.10.
    Continuous and Discrete Time Dynamic Models Chapter 5, Sections 5.1-5.2
    16.10.
    Introduction to the Robot Platform
    -
    23.10.
    (No lecture, examination week)
    -
    30.10.
    Modeling the Robot Platform-
    6.11.
    Discretization of Continuous-Time Dynamic Models
    Chapter 5, Sections 5.3-5.4
    13.11.
    Filtering Problem and Kalman Filtering
    Chapter 6, Sections 6.1-6.2
    20.11.
    Extended and Unscented Kalman Filtering
    Chapter 6, Sections 6.3-6.5
    27.11.
    Bootstrap Particle Filtering
    Chapter 6, Section 6.6
    4.12.
    Course Summary
    Chapters 1-6
    11.12.
    Project Work Q & A
    -


    Exercises: Exercise sessions are held on Mondays, 14:15 - 16.00 in F175b, Health Technology House, Otakaari 3, starting on Monday, Sep 16, 2019.

    Exam: The written exam will take place on Monday December 9, 2019, 14.00 - 17.00 in F175b, Health Technology House, Otakaari 3.

    • icon for activity
      ForumAnnouncements Forum
    • icon for activity
      ForumAllmän diskussion Forum

Course home

Course home

Nästa sektion

Materials►
Hoppa över Kommande händelser
Kommande händelser
Laddar
Sitehändelse MyCourses maintenance, service out of use
Monday, 12 June, 10:00 » 17:00

Gå till Kalender
  • ELEC-E8740 - Basics of sensor fusion, 09.09.2019-09.12.2019
  • Sektioner
  • Allmänt
  • Materials
  • Exercises
  • Project
  • Errata
  • Feedback
  • Results
  • Framsida
  • Kalender
  • Learner Metrics

Aalto logo

Tuki / Support
Opiskelijoille / Students
  • MyCourses instructions for students
  • email: mycourses(at)aalto.fi
Opettajille / Teachers
  • MyCourses help
  • MyTeaching Support form
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Du är för tillfället inloggad som gästanvändare (Logga in)
  • Högskolor
    • Handelshögskolan (BIZ)
    • Högskolan för elektroteknik (ELEC)
    • Högskolan för ingenjörsvetenskaper (ENG)
    • Högskolan för kemiteknik (CHEM)
    • – Andra guider (CHEM)
    • – Anvisning för literaturarbeten (CHEM)
    • Högskolan för konst, design och arkitektur (ARTS)
    • Högskolan för teknikvetenskaper (SCI)
    • Andra studier
    • Språkcentret
    • Open University
    • Biblioteket
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • Länkar till tjänster
    • MyCourses
    • - MyCourses instructions for Teachers
    • - Anvisningar för studerande
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Data protection instructions for teachers
    • - Workspace for thesis supervision
    • Sisu
    • Studentguide
    • Courses.aalto.fi
    • Unverisitets bibliotek
    • - Resourcesguides
    • - Imagoa / Öppen vetenskap och användning av bilder
    • IT-tjänster
    • Campus
    • - Byggnads öppettider
    • Restaurants in Otaniemi
    • AUS Aalto-universitetets studentkår
    • Aalto Marketplace
  • ALLWELL?
    • Studiekompetens
    • Vägledning och stöd för studerande
    • Starting Point of Wellbeing
    • Om AllWell? -enkäten
  •   ‎(sv)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎