Gå direkt till huvudinnehåll
MyCourses MyCourses
  • Högskolor
    Handelshögskolan (BIZ) Högskolan för elektroteknik (ELEC) Högskolan för ingenjörsvetenskaper (ENG) Högskolan för kemiteknik (CHEM) – Andra guider (CHEM) – Anvisning för literaturarbeten (CHEM) Högskolan för konst, design och arkitektur (ARTS) Högskolan för teknikvetenskaper (SCI) Andra studier Språkcentret Open University Biblioteket Aalto university pedagogical training program UNI (exams) Sandbox
  • Länkar till tjänster
    MyCourses - Instructions for Teachers - Teacher book your online session with a specialist - Digital tools for teaching - Data protection instructions for teachers - Anvisningar för studerande - Workspace for thesis supervision Sisu Studentguide Courses.aalto.fi Unverisitets bibliotek - Resourcesguides - Imagoa / Öppen vetenskap och användning av bilder IT-tjänster Campus - Byggnads öppettider Restaurants in Otaniemi AUS Aalto-universitetets studentkår Aalto Marketplace
  • ALLWELL?
    Studiekompetens Stöd för studerande Starting Point of Wellbeing Om AllWell? -enkäten
  •   ‎(sv)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Du är för tillfället inloggad som gästanvändare (Logga in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

MS-E1280 - Measure and Integral D, 26.10.2020-04.12.2020

This course space end date is set to 04.12.2020 Search Courses: MS-E1280

  1. Framsida
  2. Kurser
  3. högskolan f?...
  4. department of...
  5. ms-e1280 - me...
  6. Sektioner
  7. Lecture notes
 
Kursens beskrivning

Lecture notes

  • Lecture notes

    Lecture notes

    • The course will follow these lecture notes written by Juha Kinnunen. There is no need to buy any books.
    • We have adopted a flipped classroom model for the course. The participants are expected to study the announced pages of the lecture notes before each lecture. We shall discuss the material interactively at the lectures.

    • icon for activity FilLecture notes Fil PDF-dokument
    • Here are some comments about things related to the lecture notes:

      • For outer measures, measurability is defined in Definition 1.4, but for measure, measurability just means that the set belongs to the sigma-algebra, where the measure is defined. Usually this does not cause too much confusion as measurable sets for measures also satisfy the condition in Definition 1.4. whenever the quantities are defined.


    • Schedule:

      1. Mon 26 Oct: Outer measure and measurable sets (1.1-1.2)
      2. Thu 29 Oct: Measures and properties of measurable sets (1.3)
      3. Mon 2 Nov: Geometric characterizations of measurable sets and metric measures (1.4-1.6)
      4. Thu 5 Nov: Lebesgue measure, invariance properties and measurable sets (1.7-1.9)
      5. Mon 9 Nov: A Lebesgue nonmeasurable set, Cantor set and definition of measurable functions (1.10-1.11, 2.1-2.2)
      6. Thu 12 Nov: Properties of measurable functions, Cantor-Lebesgue function (2.3-2.6)
      7. Mon 16 Nov: Approximation of measurable functions, modes of convergence for sequences of functions, Egorov's and Lusin's theorems (2.7-2.9)
      8. Thu 19 Nov: The definition of integral and the monotone convergence theorem (3.1-3.3)
      9. Mon 23 Nov: Fatou's lemma, integral of a signed function and the dominated convergence theorem (3.4-3.6)
      10. Thu 26 Nov: Lebesgue integral and the space of integrable functions (3.7)
      11. Mon 30 Nov: Cavalieri's principle and the comparison of Lebesgue and Riemann integrals (3.8-3.9)
      12. Thu 3 Dec: Fubini's theorem (3.10-3.11)

    • Preliminaries

      In this course, we assume that the students have studied the course Metric spaces (old name Euklidiset avaruudet / Euclidean spaces). In particular, you should know:

      • real numbers, supremum, infimum
      • countable and uncountable sets
      • open and closed sets, boundary, closure
      • compact sets and coverings
      • sequences in metric spaces
      • function sequences
      • continuity

      You can study these topics for example from the course material of the Metric space -course or from

      Rudin: Principles of Mathematical Analysis

      • Section 2 contains most important concepts
      • Part of Sections 3 and 4 can be also useful

    • Further reading:

      A.M. Bruckner, J.B. Bruckner, and B.S. Thomson, Real Analysis, Prentice-Hall 1997

      L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press 1992

      G.B. Folland, Real Rnalysis. Modern Techniques and Their Applications (2nd edition), John Wiley & Sons 1999

      F. Jones, Lebesgue Integration on Euclidean Space (revised edition), Jones and Bartlett Publishers 2001

      K.L. Kuttler, Modern Real Analysis, CRC Press 1998

      W. Rudin, Real and Complex Analysis, McGraw-Hill 1986

      E. Stein and R. Sakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Spaces, Princeton University Press 2005

      T. Tao, Introduction to Measure Theory, American Mathematical Society 2011

      M.E. Taylor, Measure theory and integration, American Mathematical Society 2006 

      R.L. Wheeden and A. Zygmund, Measure and Integral: An introduction to Real Analysis, Marcel Dekker 1977

      W.P. Ziemer, Modern Real Analysis, PWS Publishing Company 1995

      J. Yeh, Real Analysis, Theory of Measure and Integration (2nd edition), World Scientific 2006

Course home

Course home

Nästa sektion

Pre-lecture quizzes►
Hoppa över Kommande händelser
Kommande händelser
Laddar Det finns inga framtida händelser
Gå till Kalender
  • MS-E1280 - Measure and Integral D, 26.10.2020-04.12.2020
  • Sektioner
  • Allmänt
  • Lecture notes
  • Pre-lecture quizzes
  • Online teaching (zoom)
  • Contact information
  • Framsida
  • Kalender
  • Learner Metrics

Aalto logo

Tuki / Support
  • MyCourses help
  • mycourses(at)aalto.fi
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Du är för tillfället inloggad som gästanvändare (Logga in)
  • Högskolor
    • Handelshögskolan (BIZ)
    • Högskolan för elektroteknik (ELEC)
    • Högskolan för ingenjörsvetenskaper (ENG)
    • Högskolan för kemiteknik (CHEM)
    • – Andra guider (CHEM)
    • – Anvisning för literaturarbeten (CHEM)
    • Högskolan för konst, design och arkitektur (ARTS)
    • Högskolan för teknikvetenskaper (SCI)
    • Andra studier
    • Språkcentret
    • Open University
    • Biblioteket
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • Länkar till tjänster
    • MyCourses
    • - Instructions for Teachers
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Data protection instructions for teachers
    • - Anvisningar för studerande
    • - Workspace for thesis supervision
    • Sisu
    • Studentguide
    • Courses.aalto.fi
    • Unverisitets bibliotek
    • - Resourcesguides
    • - Imagoa / Öppen vetenskap och användning av bilder
    • IT-tjänster
    • Campus
    • - Byggnads öppettider
    • Restaurants in Otaniemi
    • AUS Aalto-universitetets studentkår
    • Aalto Marketplace
  • ALLWELL?
    • Studiekompetens
    • Stöd för studerande
    • Starting Point of Wellbeing
    • Om AllWell? -enkäten
  •   ‎(sv)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎