Gå direkt till huvudinnehåll
MyCourses MyCourses
  • Högskolor
    Handelshögskolan (BIZ) Högskolan för elektroteknik (ELEC) Högskolan för ingenjörsvetenskaper (ENG) Högskolan för kemiteknik (CHEM) – Andra guider (CHEM) – Anvisning för literaturarbeten (CHEM) Högskolan för konst, design och arkitektur (ARTS) Högskolan för teknikvetenskaper (SCI) Andra studier Språkcentret Open University Biblioteket Aalto university pedagogical training program UNI (exams) Sandbox
  • Länkar till tjänster
    MyCourses - MyCourses instructions for Teachers - Anvisningar för studerande - Teacher book your online session with a specialist - Digital tools for teaching - Data protection instructions for teachers - Workspace for thesis supervision Sisu Studentguide Courses.aalto.fi Unverisitets bibliotek - Resourcesguides - Imagoa / Öppen vetenskap och användning av bilder IT-tjänster Campus - Byggnads öppettider Restaurants in Otaniemi AUS Aalto-universitetets studentkår Aalto Marketplace
  • ALLWELL?
    Studiekompetens Vägledning och stöd för studerande Starting Point of Wellbeing Om AllWell? -enkäten
  •   ‎(sv)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Du är för tillfället inloggad som gästanvändare (Logga in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

MS-E1654 - Computational Inverse Problems D, 01.03.2021-09.04.2021

This course space end date is set to 09.04.2021 Search Courses: MS-E1654

  1. Framsida
  2. Kurser
  3. högskolan f?...
  4. department of...
  5. ms-e1654 - co...
  6. Sektioner
  7. Material
 
Kursens beskrivning
 

Material

  • Material

    Material

    The preliminary versions of the lecture slides can be found below. The slides may still be updated during the course. The lectures are prerecorded and published (at the latest) on Mondays and Wednesdays.

    Recommended supplementary reading: J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005 (mainly Chapters 2 and 3), and D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing. Ten Lectures on Subjective Computing, Springer, 2007.

    • March 1

      Practical issues, motivation, compact operators and singular value decomposition, Fredholm equation and its solvability.

      Practical issues:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=1326dbef-6bff-45fa-b6fd-acd800f52dec

      Well-posed problems, ill-posed problems, (inverse) heat equation example:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a3ca5bbf-e711-498c-8a5a-acd800fb4471

      Fredholm equation, compact operators, singular value decomposition, solvability conditions:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=bd592f00-6d47-4420-98b9-acd9007fc65a


      • Lecture 1Lecture 1
        • lecture1.pdflecture1.pdf222.3KB
    • March 3

      Truncated singular value decomposition, pseudoinverse.

      Truncated singular value decomposition solution:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a149aa00-890c-49a6-bb9b-acd900c769e5

      Interpretation for matrices and MATLAB:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=8e5cb31a-49cc-4d9d-8774-acd900d34531

      Discretization of the heat equation example and solving the corresponding inverse problem using truncated singular value decompositions:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=9c195974-0be0-42b7-bbae-acd900df2ff0

      • Lecture 2Lecture 2
        • lecture2.pdflecture2.pdf220.3KB
    • March 8

      Morozov discrepancy principle, Tikhonov regularisation and its generalizations.

      Review of the truncated SVD solution, Morozov's discrepancy principle and its motivation:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=ffa69909-9861-457a-af35-ace100ea5f54

      (Basic) Tikhonov regularization, and its motivation, well posedness and theoretical properties:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=69148e33-42a2-4a3d-bcbe-ace100f8c982

      Implementing Tikhonov regularization for matrix equations (in MATLAB), application to the (discretized) inverse heat equation:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=1f187112-615a-413f-8024-ace101058837

      Generalizations of Tikhonov regularization, i.e. nonlinear inverse problems and more general penalty terms:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=04704008-9b35-43d3-b5d0-ace1010d12db


      • Lecture 3Lecture 3
        • lecture3.pdflecture3.pdf238.8KB
    • March 10

      Regularization by truncated iterative methods: Landweber-Fridman iteration.

      Basic idea of (truncated) iterative methods (for solving inverse problems), Banach fixed point theorem, convergence of Landweber-Fridman iteration:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=f342d724-4941-4571-807d-ace200dd89e7

      Regularization properties of Landweber-Fridman iteration, application to the inverse heat equation:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=8556b8c9-3b78-48ac-a3b5-ace7007da16a

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a1094b06-6ee2-4e1e-9ba2-ace700890b66

      • Lecture 4Lecture 4
        • lecture4.pdflecture4.pdf235.9KB
    • March 15

      Regularization by truncated iterative methods: conjugate gradient method.

      Basic idea of Krylov subspace methods, equivalent formulation of a positive definite matrix equation as a quadratic minimization problem:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=93a4edca-86e1-4276-96da-ace900f1bb56

      Sequential minimization over lines:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=e7e6c002-9ba1-44e0-885d-aceb00a9bfff

      Minimization over a hyperplane and its equivalence with sequential minimization over lines for A-conjugate search directions:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=82d4ef39-06d7-4f9d-ae45-aceb00b7ece0

      Krylov subspaces and their connection to the construction of A-conjugate search directions in the (preliminary) conjugate gradient algorithm:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=60977dcd-d04c-4691-86ae-aceb00c95bc7


      • Lecture 5Lecture 5
        • lecture5.pdflecture5.pdf401.3KB
    • March 17

      Conjugate gradient method (cont.), preliminaries of statistical inversion.

      Review of the main ideas behind the conjugate gradient method, its standard formulation and two ways of applying it to the inverse heat equation:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=e96327ec-1481-4cb3-84c9-acec00eace15

      Basic setting on statistical/Bayesian inversion, (very) basics of probability  theory (without measure theory):

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=b751d4c0-09b2-4c95-81da-acee007f140c

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a2533392-da32-42fe-b348-acee00c8ba3c

      • Lecture 6Lecture 6
        • lecture6.pdflecture6.pdf255KB
    • March 22

      Preliminaries of statistical inversion (cont.), construction of likelihood.

      Poisson process, Gaussian random variables, the central limit theorem (all very informally):

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=e02aebbc-ac7c-4e9b-be37-acf3007e34c5

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=326a232f-d682-4a39-8bc5-acf300cedcab

      Inverse problems in the Bayesian setting: prior, likelihood and posterior.

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=885dd08a-f47b-4cae-ac44-acf300d59695

      Estimators:

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=d64a7ea0-6928-4692-ae31-acf300e19f2a

      Construction of likelihood (additive noise model):

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=3a83d9e8-2a44-4470-8a68-acf4006c257e

      • Lecture 7Lecture 7
        • lecture7.pdflecture7.pdf303.5KB
    • March 24

      Construction of likelihood (cont.), sampling, prior models.

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=a707f988-7413-4f57-b107-ab8300b9da62

      • Lecture 8Lecture 8
        • lecture8.pdflecture8.pdf307.9KB
    • March 29

      Prior models (cont.), n-variate Gaussian densities.

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=91ab0e86-3047-4d5b-b4d8-ab84008885f2

      • Lecture 9Lecture 9
        • lecture9.pdflecture9.pdf245.8KB
    • March 31

      Improper Gaussian priors, MCMC: Metropolis-Hastings algorithm.

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=fcda6f1d-f094-4294-9fd5-ab8400c44951

      • Lecture 10Lecture 10
        • lecture10.pdflecture10.pdf342.4KB
    • April 5

      Gibbs sampler, judging the quality of a sample.

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=e0aad711-bdad-4e33-a030-ab8800c47b25

      • Lecture 11Lecture 11
        • lecture11.pdflecture11.pdf2MB
    • April 7

      Hyper models.

      https://aalto.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=75430a96-aa39-4f50-b812-ab9100a53ebd

      • Lecture 12Lecture 12
        • lecture12.pdflecture12.pdf239.9KB

Course home

Course home

Nästa sektion

Uppgifter►
Hoppa över Kommande händelser
Kommande händelser
Laddar Det finns inga framtida händelser
Gå till Kalender
  • MS-E1654 - Computational Inverse Problems D, 01.03.2021-09.04.2021
  • Sektioner
  • Allmänt
  • Material
  • Uppgifter
  • Home exam, April 12 - May 19
  • Framsida
  • Kalender
  • Learner Metrics

Aalto logo

Tuki / Support
Opiskelijoille / Students
  • MyCourses instructions for students
  • email: mycourses(at)aalto.fi
Opettajille / Teachers
  • MyCourses help
  • MyTeaching Support form
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Du är för tillfället inloggad som gästanvändare (Logga in)
  • Högskolor
    • Handelshögskolan (BIZ)
    • Högskolan för elektroteknik (ELEC)
    • Högskolan för ingenjörsvetenskaper (ENG)
    • Högskolan för kemiteknik (CHEM)
    • – Andra guider (CHEM)
    • – Anvisning för literaturarbeten (CHEM)
    • Högskolan för konst, design och arkitektur (ARTS)
    • Högskolan för teknikvetenskaper (SCI)
    • Andra studier
    • Språkcentret
    • Open University
    • Biblioteket
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • Länkar till tjänster
    • MyCourses
    • - MyCourses instructions for Teachers
    • - Anvisningar för studerande
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Data protection instructions for teachers
    • - Workspace for thesis supervision
    • Sisu
    • Studentguide
    • Courses.aalto.fi
    • Unverisitets bibliotek
    • - Resourcesguides
    • - Imagoa / Öppen vetenskap och användning av bilder
    • IT-tjänster
    • Campus
    • - Byggnads öppettider
    • Restaurants in Otaniemi
    • AUS Aalto-universitetets studentkår
    • Aalto Marketplace
  • ALLWELL?
    • Studiekompetens
    • Vägledning och stöd för studerande
    • Starting Point of Wellbeing
    • Om AllWell? -enkäten
  •   ‎(sv)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎