Gå direkt till huvudinnehåll
MyCourses MyCourses
  • Högskolor
    Handelshögskolan (BIZ) Högskolan för elektroteknik (ELEC) Högskolan för ingenjörsvetenskaper (ENG) Högskolan för kemiteknik (CHEM) – Andra guider (CHEM) – Anvisning för literaturarbeten (CHEM) Högskolan för konst, design och arkitektur (ARTS) Högskolan för teknikvetenskaper (SCI) Andra studier Språkcentret Open University Biblioteket Aalto university pedagogical training program UNI (exams) Sandbox
  • Länkar till tjänster
    MyCourses - MyCourses instructions for Teachers - Anvisningar för studerande - Teacher book your online session with a specialist - Digital tools for teaching - Data protection instructions for teachers - Workspace for thesis supervision Sisu Studentguide Courses.aalto.fi Unverisitets bibliotek - Resourcesguides - Imagoa / Öppen vetenskap och användning av bilder IT-tjänster Campus - Byggnads öppettider Restaurants in Otaniemi AUS Aalto-universitetets studentkår Aalto Marketplace
  • ALLWELL?
    Studiekompetens Vägledning och stöd för studerande Starting Point of Wellbeing Om AllWell? -enkäten
  •   ‎(sv)‎
      ‎(en)‎   ‎(fi)‎   ‎(sv)‎
  • Toggle Search menu
  • Du är för tillfället inloggad som gästanvändare (Logga in)

close

Can not find the course?
try also:

  • Sisu
  • Courses.aalto.fi

MS-E2112 - Multivariate Statistical Analysis D, Lecture, 9.1.2023-21.4.2023

  1. Framsida
  2. Kurser
  3. högskolan f?...
  4. department of...
  5. ms-e2112 - mu...
  6. Sektioner
  7. Assignments
 
Kursens beskrivning
 

Assignments

  • Assignments

    Assignments

    Exercises

    Participate to weekly exercises (group 1, group 2, group 3 OR group 4) - not compulsory, but highly recommended - max 3 points. If you attend 2-3 times, you get 1 point. If you attend 4-5 times, you get 2 points. If you attend at least 6 times (out of 11 times), you get 3 points.

    In order to earn the exercise points, you have to arrive on time to the exercise session and write your name to the participation list. You can not get any exercise points without attending the exercises.

    Exercise session 11 is reserved for the project work and for summarizing the contents of the course.

    Attending all the exercise sessions, including the last one, is highly recommended.

    Note that all the exercise classes are given on campus. There are no remote groups. 

    Homework

    Solve the homework problems and be ready to present your solutions in the exercise group - not compulsory, but highly recommended - max 3 points. Note that your solution does not have to be perfect or even correct --- trying your very best is enough!

    If you solve your homework assignments  2-3 times, you get 1 point. If you solve your homework assignments 4-5 times, you get 2 points. If you  solve your homework assignments at least 6 times (out of 10 times), you get 3 points.

    In order to earn the homework points, you have to arrive on time to the exercise session and write your name to the homework list. You can not get any homework points without attending the exercises.

    The exercise points are valid until the end of November 2023.

    Project Work 

    Submit your project work on time as one single pdf-file - THIS IS COMPULSORY - max 6 points 

    Find a multivariate (at least 3-variate) dataset (Statistics Finland (=Tilastokeskus), OECD, collect yourself, ...), set a research question, and perform multivariate analysis. Write a report (max 10 pages), and submit it below before Friday 14.4.2023 at 12.00! Note that the deadline is at noon, not midnight!

    Note that the project work has to be conducted individually. Group work is not allowed.

    Goals of the project work:

    -Description of the research questions

    -Description of the dataset

    -Univariate and bivariate statistical analysis to present the variables

    -Application of your chosen multivariate statistical methods to answer research questions (justification and output)

    -Conclusions and answers to the question raised at the beginning

    -Critical evaluation of the analysis

    Remember that no findings is a finding!

    Note that you will automatically get 0 points from the exam if you will not submit your project work on time!

    About grading of the project work: 

    Maximum points are 6 and the 6 points are divided as follows.

    Intro (description of the research question and of the data source or data collection) --- max 0.5 p.

    Univariate analysis (description of the variables, summary statistics, visualization) --- max 1p.

    Bivariate analysis (analysis of bivariate dependencies, visualization) --- max 1 p.

    Multivariate analysis --- max 3 p. This is divided to selection of the method --- max 1 p.; technical implementation --- max 1 p.; and presenting the results/interpretation --- max 1 p.

    Critical evaluations (report about possible sources of biases etc.) --- max 0.5 p.

    If the report is not polished (blurry images, text in the marginal etc), that may lead to -1p.

    Note that you don't have to attach any R-codes to your project work.



    • icon for activity
      InlämningsuppgiftProject work submission, Deadline 14.4. at 12.00 (midday) Inlämningsuppgift
    • icon for activity
      MappR Markdown Template Mapp
    • icon for activity
      MappWeek 1 Mapp
    • icon for activity
      MappWeek 2 Mapp
    • icon for activity
      MappWeek 3 Mapp
    • icon for activity
      MappWeek 4 Mapp
    • icon for activity
      MappWeek 5 Mapp
    • icon for activity
      MappWeek 6 Mapp
    • icon for activity
      MappWeek 7 Mapp
    • icon for activity
      MappWeek 8 Mapp
    • icon for activity
      MappWeek 9 Mapp
    • icon for activity
      MappWeek 10 Mapp

Course home

Course home

Föregående sektion

◄Lectures
Hoppa över Kommande händelser
Kommande händelser
Laddar Det finns inga framtida händelser
Gå till Kalender
  • MS-E2112 - Multivariate Statistical Analysis D, Lecture, 9.1.2023-21.4.2023
  • Sektioner
  • Allmänt
  • Lectures
  • Assignments
  • Framsida
  • Kalender
  • Learner Metrics

Aalto logo

Tuki / Support
Opiskelijoille / Students
  • MyCourses instructions for students
  • email: mycourses(at)aalto.fi
Opettajille / Teachers
  • MyCourses help
  • MyTeaching Support form
Palvelusta
  • MyCourses rekisteriseloste
  • Tietosuojailmoitus
  • Palvelukuvaus
  • Saavutettavuusseloste
About service
  • MyCourses protection of privacy
  • Privacy notice
  • Service description
  • Accessibility summary
Service
  • MyCourses registerbeskrivining
  • Dataskyddsmeddelande
  • Beskrivining av tjänsten
  • Sammanfattning av tillgängligheten

Du är för tillfället inloggad som gästanvändare (Logga in)
  • Högskolor
    • Handelshögskolan (BIZ)
    • Högskolan för elektroteknik (ELEC)
    • Högskolan för ingenjörsvetenskaper (ENG)
    • Högskolan för kemiteknik (CHEM)
    • – Andra guider (CHEM)
    • – Anvisning för literaturarbeten (CHEM)
    • Högskolan för konst, design och arkitektur (ARTS)
    • Högskolan för teknikvetenskaper (SCI)
    • Andra studier
    • Språkcentret
    • Open University
    • Biblioteket
    • Aalto university pedagogical training program
    • UNI (exams)
    • Sandbox
  • Länkar till tjänster
    • MyCourses
    • - MyCourses instructions for Teachers
    • - Anvisningar för studerande
    • - Teacher book your online session with a specialist
    • - Digital tools for teaching
    • - Data protection instructions for teachers
    • - Workspace for thesis supervision
    • Sisu
    • Studentguide
    • Courses.aalto.fi
    • Unverisitets bibliotek
    • - Resourcesguides
    • - Imagoa / Öppen vetenskap och användning av bilder
    • IT-tjänster
    • Campus
    • - Byggnads öppettider
    • Restaurants in Otaniemi
    • AUS Aalto-universitetets studentkår
    • Aalto Marketplace
  • ALLWELL?
    • Studiekompetens
    • Vägledning och stöd för studerande
    • Starting Point of Wellbeing
    • Om AllWell? -enkäten
  •   ‎(sv)‎
    •   ‎(en)‎
    •   ‎(fi)‎
    •   ‎(sv)‎