Differentiaali- ja integraalilaskenta 2
6. Ääriarvojen luokittelu
6.1. Lagrangen kertoimet
Lagrangen kertoimet
Usein optimointitehtävissä halutaan asettaa rajoitusehtoja optimoitaville muuttujille. Tyypillinen esimerkki tällaisesta tehtävästä on peltipurkin muodon optimointi: Halutaan minimoida purkin pinta-ala (eli käytetty materiaali) niin, että tilavuus on vakio.
Duaalitehtävä: Halutaan maksimoida purkin tilavuus siten, että pinta-ala on vakio. Primaali- ja duaalitehtävillä on sama ratkaisu. Tämän sanoo maalaisjärkikin, mutta itse asiassa ratkaisuun johtavat yhtälötkin ovat (olennaisesti) samoja.
Havaitaan, että mikäli ongelmalla on ratkaisu, niin ratkaisupisteessä vektorien ja on oltava joko yhdensuuntaisia tai vastakkaissuuntaisia (mikäli ). Miksi? Koska muussa tapauksessa funktiolla olisi nollasta poikkeva suunnattu derivaatta käyrän tangentin suuntaan pisteessä , ja siis minimi ei voi olla pisteessä .
Entä jos tehtävänä olisi maksimoida ehdolla ? Entä jos tehtävänä olisi maksimoida ehdolla ?
Mikäli optimipiste on olemassa, se on Lagrangen funktion kriittinen piste (eli gradientin nollakohta). Menetelmä yleistyy myös useammalle muuttujalle. Esimerkiksi kolmen muuttujan tapauksessa Lagrangen funktio on missä on minimoitava funktio ja rajoite-ehdot ovat sekä .
Esimerkki
Minimoidaan funktio ehdolla . Muodostetaan aluksi Lagrangen funktio Yhtälöt kriittisille pisteille ovat \begin{align*} 0 &=\frac{\partial L}{\partial x} = 2x(1+\lambda y),\\ 0 &=\frac{\partial L}{\partial y} = 2y+\lambda x^2,\\ 0 &=\frac{\partial L}{\partial \lambda}= x^2y-16,\\ \end{align*} joista viimeinen on aina itse rajoitusehto.
Ensimmäisestä yhtälöstä saadaan tai , mutta on ristiriidassa kolmannen yhtälön kanssa. Siten toisesta yhtälöstä Tästä saadaan edelleen , ja eli . Ääriarvoja (mahdollisia minimejä) on siis kaksi . Pitää selvittää muilla keinoin, ovatko nämä minimejä vai maksimeja.
Esimerkki
Yritetään etsiä Lagrangen kertoimien menetelmällä funktion minimi ehdolla . Helposti havaitaan, että minimi saavutetaan pisteessä .
Muodostetaan Lagrangen funktio Saadaan yhtälöt Nämä yhtälöt ovat keskenään ristiriidassa, joten ratkaisua niille ei ole. Huomaa, että minimipisteessä. Tästä nähdään, että Lagrangen kertoimet näkevät ääriarvoja vain pisteissä, joissa .
Esimerkki
Etsitään ääriarvot funktiolle ehdoilla ja .
Koska on jatkuva ja annettujen leikkausjoukkojen leikkaus on ympyräviiva (eli rajoitettu ja suljettu joukko), niin ääriarvot ovat olemassa. Muodostetaan Lagrangen funktio Lagrangen funktion osittaisderivaatoista saadaan yhtälöt \begin{align*} & y+\lambda+2\mu x=0, \\ & x+\lambda+2\mu y=0, \\ & 2+\lambda+2\mu z=0, \\ & x+y+z = 0,\text{ ja } \\ & x^2+y^2+z^2-24=0. \end{align*} Kahden ensimmäisen yhtälön erotus johtaa yhtälöön , joten joko tai . Tutkitaan molemmat tapaukset.
Tapaus I (): Toisen ja kolmannen yhtälön perusteella Neljännestä yhtälöstä saadaan ja . Viimeisen yhtälön perusteella . Koska , saadaan ja . Nyt , joten . Yhdessä yhtälön kanssa tästä saadaan kaksi kriittistä pistettä Kummassakin pisteessä .
Tapaus II (): Neljännestä yhtälöstä nähdään, että , ja viimeisen yhtälön perusteella eli . Näin ollen, kriittiset pisteet ovat Saadaan Siten funktion maksimi on ja minimi .