Kirja

11. Appendices

11.4. Laplace transforms


Definition:   L{f(t)}=F(s)=0estf(t)dt

Derivation:     L{f(t)}=sF(s)f(0)

Integration
   L{t0f(u)du}=1sF(s)

L{t0u0f(v)dvdu}=1s2F(s)

Linearity:     L{Af(t)+Bg(t)}=AF(s)+BG(s)

Transfer in Laplace domain:      L{eatf(t)}=F(sa)
Transfer in time domain:   L{f(ta)Hs(ta)}=easF(s),a>0

Hs(ta)={0,ta  Heaviside step function

Convolution:   L{t0f(tu)g(u)du}=F(s)G(s)

Heaviside theory:   

L{mn=1p(an)q(an)eant}=P(s)Q(s),

where roots of Q(s) are: a1, a2, ..., an.


                                     

                                                                              

  

Most common transforms in electrochemistry



f(t)
  
F(s)
----------------------------------------------------------------------------

-------------------------
1


1s
t

  1s2
 tn1(n1)!

   1sn
1πt

  1s
2tπ

  1ss
eat

  1s+a
sin(ωt)

  ωs2+ω2
cos(ωt)

  ss2+ω2
1πtaea2terfc(at)

  1s+a
1πt+aea2terf(at)

  ssa2
ea2terf(at)

  as(sa2)
1ea2terfc(at)

  as(s+a)
ea2terfc(at)

  1s(s+a)
a2πt3exp(a24t)

  eas,a0

1πtexp(a24t)

   1seas,a0
erfc(a2t)

  1seas,a0
2tπexp(a24t)a erfc(a2t)

  1sseas,a0
1πtexp(a24t)beab+b2terfc(a2t+bt)
  eass+b,a0