Kirja
11. Appendices
11.4. Laplace transforms
Definition: | L{f(t)}=F(s)=∫∞0e−stf(t)dt |
||
---|---|---|---|
Derivation: | L{f′(t)}=sF(s)−f(0) |
||
Integration |
L{∫t0f(u)du}=1sF(s) L{∫t0∫u0f(v)dvdu}=1s2F(s) |
||
Linearity: | L{Af(t)+Bg(t)}=AF(s)+BG(s) |
||
Transfer in Laplace domain: | L{eatf(t)}=F(s−a) |
||
Transfer in time domain: | L{f(t−a)Hs(t−a)}=e−asF(s),a>0 Hs(t−a)={0,ta Heaviside step function |
||
Convolution: | L{∫t0f(t−u)g(u)du}=F(s)G(s) |
||
Heaviside theory: | L{m∑n=1p(an)q′(an)eant}=P(s)Q(s), where roots of Q(s) are: a1, a2, ..., an. |
Most common transforms in electrochemistry
f(t) |
F(s) |
||
---|---|---|---|
---------------------------------------------------------------------------- | ------------------------- | ||
1 | 1s |
||
t |
1s2 |
||
tn−1(n−1)! |
1sn | ||
1√πt |
1√s |
||
2√tπ |
1s√s |
||
e−at |
1s+a |
||
sin(ωt) |
ωs2+ω2 |
||
cos(ωt) |
ss2+ω2 |
||
1√πt−aea2terfc(a√t) |
1√s+a |
||
1√πt+aea2terf(a√t) |
√ss−a2 |
||
ea2terf(a√t) |
a√s(s−a2) |
||
1−ea2terfc(a√t) |
as(√s+a) |
||
ea2terfc(a√t) |
1√s(√s+a) |
||
a2√πt3exp(−a24t) |
e−a√s,a≥0 |
||
1√πtexp(−a24t) |
1√se−a√s,a≥0 | ||
erfc(a2√t) |
1se−a√s,a≥0 |
||
2√tπexp(−a24t)−a erfc(a2√t) |
1s√se−a√s,a≥0 |
||
1√πtexp(−a24t)−beab+b2terfc(a2√t+b√t) |
e−a√s√s+b,a≥0 |