Kirja

11. Appendices

11.3. Relations of complex numbers

Complex number:                   z=x+iy , where  i=\sqrt{{-1}} is imaginary unit

Complex conjugate:        z^*=x-iy

 

In polar coordinates:          z=re^{i\varphi}

                                            r=\sqrt{zz^*}=\sqrt{x^2+y^2}

                                            \varphi=\text{atan}(y/x)

 

Euler's formula:                     re^{\pm i\varphi}=r(\cos\varphi\pm i\sin\varphi) , where

                                            x=r\cos(\varphi)   and   y=r\sin(\varphi)

 

De Moivre's formula:          (\cos\varphi+i\sin\varphi)^n=\cos(n\varphi)+i\sin(n\varphi)

 

Relationship between triginimetric and hyberbolic functions:

 

 \sin\varphi=\frac{1}{2i}(e^{i\varphi}-e^{-i\varphi})=-i\sinh(i\varphi)         or        \sin(i\varphi)=i\sinh(\varphi)

 \cos\varphi=\frac{1}{2}(e^{i\varphi}-e^{-i\varphi})=\cosh(i\varphi)             or         \cos(i\varphi)=\cosh(\varphi)

 \tan\varphi=\frac{1}{i}\frac{e^{i\varphi}-e^{-i\varphi}}{e^{i\varphi}+e^{-i\varphi}}=-i\tanh(i\varphi)            or        \tan(i\varphi)=i\tanh(\varphi)

 \cot\varphi=\frac{1}{i}\frac{e^{i\varphi}+e^{-i\varphi}}{e^{i\varphi}-e^{-i\varphi}}=-i\coth(i\varphi)           or         \cot(i\varphi)=i\coth(\varphi)        

 

 

Exponentials of the imaginary unit:


  i=e^{i\pi/2} \Rightarrow i^n=(e^{i\pi/2})^n=e^{in\pi/2}=\cos(\frac{n\pi}{n})+i\sin(\frac{n\pi}{2})

E.g.  \sqrt{i}=i^{1/2}=\cos(\frac{\pi}{4})+i\sin(\frac{\pi}{4})=\frac{1+i}{\sqrt{2}}

 

Note that in this book, the imaginary unit i has been replaced by j because i is reserved for the symbol of electric current density.