CHEM-E4106 - Electrochemistry D, Lecture, 9.1.2023-21.2.2023
This course space end date is set to 21.04.2023 Search Courses: CHEM-E4106
Kirja
3. Transport in electrolyte solutions
3.1. Conductivity of an electrolyte solution
Let’s consider the situation in Figure 3.1: a particle (ion) with the charge q = ze feels a coulombic force in an electric field E:
. | (3.4) |
---|
The coulombic force makes the particle move with the velocity v (no vector notation):
, | (3.5) |
---|
where u is the mobility of the particle. Friction resists the movement:
(3.6) |
---|
In Equation (3.6) Ff is the frictional force and f the friction coefficient for which Einstein derived an expression
(3.7) |
---|
At equilibrium, the friction
force and the coulombic force cancel each other out, and we get:
. | (3.8) |
---|
Comparing Equation (3.5) with (3.8) it is immediately seen that
. | (3.9) |
---|
Electric current density i is defined using the Ohm’s law:
(3.12) |
---|
where is the conductivity of the solution. It can be written as the sum of the product of molar conductivities, k, and concentrations, ck, of all ions:
(3.13) |
---|
(3.14) |
---|
Inserting Equation (3.8) into (3.14), the following is obtained:
(3.15) |
---|
(3.16) |
---|
The relation between uk and k is
(3.17) |
---|
The above equation means that the mechanical and electrical mobility are assumed to be equal. Stokes' law defines the friction coefficient of a spherical object as
(3.18) |
---|
where η is the viscosity of the solution and a is the particle radius. Quite surprisingly, Stokes' law applies also to ions although they are of the same order of magnitude as solvent molecules, and although the law was derived via hydrodynamic considerations for macroscopic objects moving in a homogeneous medium. Assuming a as the ion radius, it follows from Equation (3.7) that
(3.19) |
---|
Multiplying this equation by η, only solvent independent constants are left on the right hand side: we have derived Walden's rule:
constant | (3.20) |
---|
Walden's rule can be used to estimate the values of diffusion coefficients in solvents where there is no measured data. The rule does not, however, apply particularly well to ions in aqueous solutions due to their strong hydration (see Figure 3.2).
Figure 3.2. The product for K+ (●) and Cs+ (■) cations in selected solvent: DMSO = dimethyl sulphoxide, NMF = n-methyl formamide, DMF = dimethyl formamide, THF = tetrahydrofurane, DMOE = dimethoxy ethane, ACN = acetonitrile. Note water! A.K.Kontturi et al., Ber. Bunsenges. Phys. Chem. 99 (1995) 1131. (P = poise = 0.1 Ns/m2).