Design Thinking and Advanced Prototyping

ELEC-C9821 - Introduction

Salu Ylirisku 11.1.2023

Today's agenda

- 1. Introductions & expectations
- 2. Practicalities
- 3. Teaming up
- 4. Project Launch

Dr. Salu Ylirisku

- Doctor of Arts / Concept Design / Aalto University / Department of Design
- Master of Science / Interaction Design / Univ. of Helsinki / Department of Computer Science
- Over 20 years experience in human-centred design and concept design & prototyping

Learning goals

- Improving practical design thinking project skills and teamwork skills
- Learn advanced prototyping techniques in the context of IoT product design

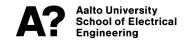
Practicalities

The course has two variants

- V5 = 5 ECTS -> 135 h
- V8 = 8 ECTS -> 216 h (recommended option)

Completely redesigned course

- I have completely redesigned DTAP for 2023 to make it more relevant and more effective learning experience
- Course prerequisites:
 - Basic understandings of electronic prototyping and
 programming makes your life in the course a lot easier


Differences between V5 & V8

V8

- Full project
- 3 learning diaries (periodical)
- Own custom topic session

V5

- Reduced project
- 2 learning diaries (periodical)
- No custom topic sessions
- No activity in period V except for Final Presentation (31th of May)

Grading V5

The course is graded on the 6-point scale: 0-5

Grade is based on:

- 1) Learning diaries, 40%
- 2) Project work (weekly deliverables), 30%
- 3) Concept presentation, final presentation, demo + poster, 20%
- 4) Project documentation, 10%

Teacher's overall evaluation of your active performance (+/-)

Grading V8

The course is graded on the 6-point scale: 0-5

Grade is based on:

- 1) Learning diaries, 30%
- 2) Project work (weekly deliverables), 30%
- 3) Custom topic session, 10%
- 4) Concept presentation, final presentation, demo + poster, 20%
- 5) Project documentation, 10%

Teacher's overall evaluation of your active performance (+/-)

Custom topic session (V8)

A V8 student team is expected to run a 20-minute introduction to a course-relevant topic, and plan a 20-40 minute related activity for other students. The session needs to be based on research.

A topic may be as simple as "why is the steering wheel so popular?" or "what are the most interesting ways to use AI with IoT products?"

Learning Diary

- Reflective & reflexive writing
- 400-600 words weekly to keep up the rhythm (deliverable periodically, 2400-3600 words)
- Show your exercises & project work
- Be visual (+ integrate images to body text)
- Read and cite academically (=IEEE or APA format)

Learning Diary Tips

Start today, submit on Friday (MyCourses student folder) Use Zotero – A free reference manager

Project Schedule

Period III User-centred design concept creation

Period IV Prototyping rounds 1 & 2

Period V Prototyping round 3, Final Presentations

Lectures/Workshops – Wed 09-12

- 09-10 Lecture
- 10-12 Workshop

Do not miss more than 2 sessions! Unless you want to receive additional reading & writing assignments.


Lectures/Workshops – Period III

- w03 Users and technology
- w04 Interpreting and ideating
- w05 Reflective prototyping
- w06 Idea framing & screening
- w07 Concept presentations
- w08 No teaching exam week

Lectures/Workshops – Period IV

- w09 Technical arguments
- w10 Financial arguments
- w11 UX and Visual Design
- w12 UX and Interaction Design
- w13 UX and Physical Design
- w14 Effective Concept Presenting (+final session reqs)
- w15 Easter no teaching
- w16 No teaching exam week

Lectures/Workshops – Period V

- w17 Custom topic by students (Teams 1 2 3)
- w18 Custom topic by students (Teams 3 4 5)
- w19 Custom topic by students (Teams 6 7)
- w20 Custom topic by students (Teams 8 9)
- w21 Custom topic by students (Teams 10 11)
- w22 Final Presentations (31.5.)

Exercises

Period III

Circuit schema design (EDA)

PCB layout design

PCB carving

PCB etching

PCB soldering

PCB testing

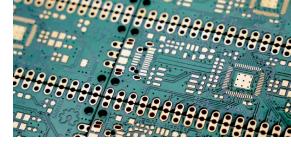
Period IV

Weekly specialized tracks

Teamwork and specializations

Teamwork and specializations

- This is a project course
- Project is done in teams of 4 persons
- Each person will have a specialization (on period IV)



Specializations

- **Embedded Design**
- **Physical Design**
- Web App Design
- **Cloud Service Design**

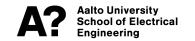
Embedded Design

https://unsplash.com/photos/vE6WEdZA6Vg

- Advanced PCB circuit design
- Battery management design
- USB-C powered charging of Lion batteries
- IoT Network connectivity with Matter standard (aka connected home over IP)
- Advanced use of the new Circuit Shop

Physical Design

- https://unspiasn.com/photos/UPOwK6iAiRQ
- Deeper understanding of physical product architecture
- Modelling more sophisticated 3D models in Fusion360
- Learning to consider manufacturing techniques, especially injection moulding, when modelling the form
- More knowledge about how PCBs and physical shapes interact
- More experience in managing 3D printing process



Web App Design

https://unsplash.com/photos/mxPiMiz7KCo

- Learning about the building blocks of Web Apps
- Learning about Interaction Design for User Experience with technical point of view
- Learning to use Figma and ProtoPie to create illustrative visual and interactive prototypes of web-based design concepts

Cloud Service Design

- Learning the basics of Linux server
- Creating a web service on Linux

- Learning to create Application Programming Interfaces (REST APIs) for the web
- Using Linux server to connect devices and services

V5 or V8?

Teaming Up

Interest

Embedded Electronics Design (green) Physical Product Design (yellow) Web App Design (red) Cloud Service Design (blue)

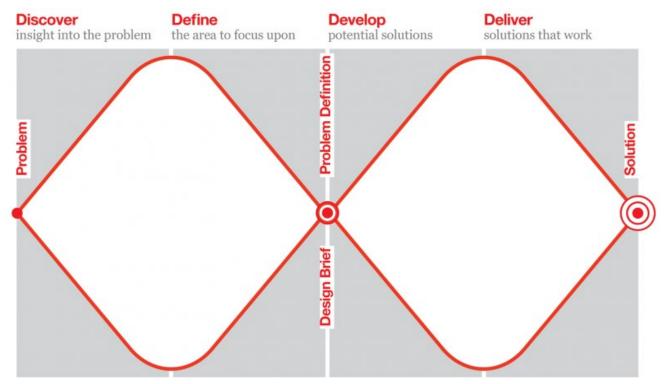
Expectations – Ambition level

V5 – Medium – High – Great – Insane

Team Agreement

Each Team needs to negotiate and sign a Team Agreement Submit it by Friday night by email (one / team)

Design Thinking – Recap



Design Thinking is NOT product design

- Do not confuse Design Thinking (DT) project with Product Design (PD) project
- DT project results in a design concept
- PD project results in a product specification

The Double Diamond

Council, D. (2007). *Eleven lessons: Managing design in eleven global companies. A study of the design process.*

Do not confuse 'solution' with 'product'

Design Thinking (DT) process results in a <u>concept</u>, not a product that can be put into market.

Product Design (PD) process leads into product. This is not a product design course.

Design Thinking does not result in product, NOT even into minimal viable product (MVP).

• However, the boundary between DT and PD is blurry

-- Presence Check --

What is a concept?

Käsite = General notion (e.g., bacteria, neuron)

Konsepti = Purposeful Construct (e.g., design concept)

What do general concepts do?

- Enables us to <u>talk</u> about, to share 'it' to reflect
- Enables us to <u>do</u> something about 'it' to plan
- Enables us to <u>dream</u> about 'it', to experience to relate

What do design concepts do?

They enable you to

- 1. Be sure that your product has great potential
- 2. Attract funding/support for the real project
- 3. Prepare you for possible partnerships / sourcing
- 4. Look fresh, cool, and innovative
- 5. Learn a lot

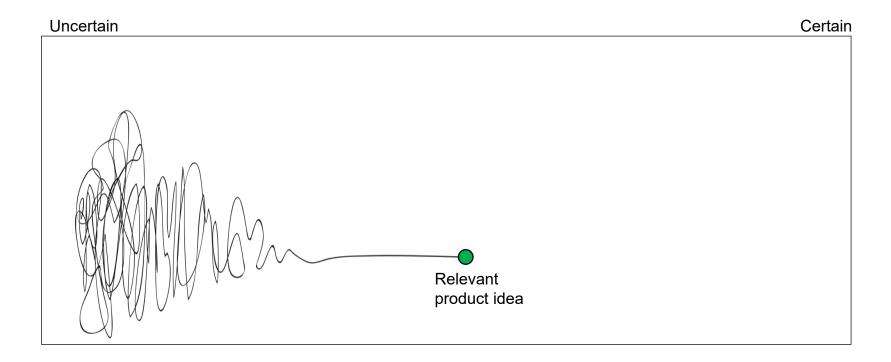
Design concept

Design concept is a management tool!

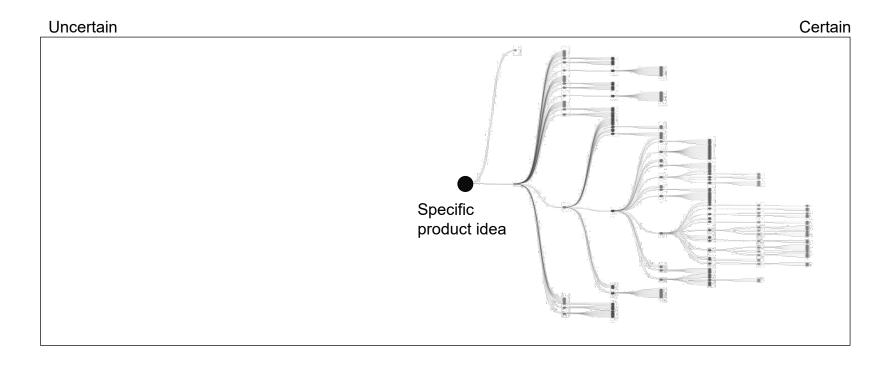
Innovation project planning

Project planning in innovation context

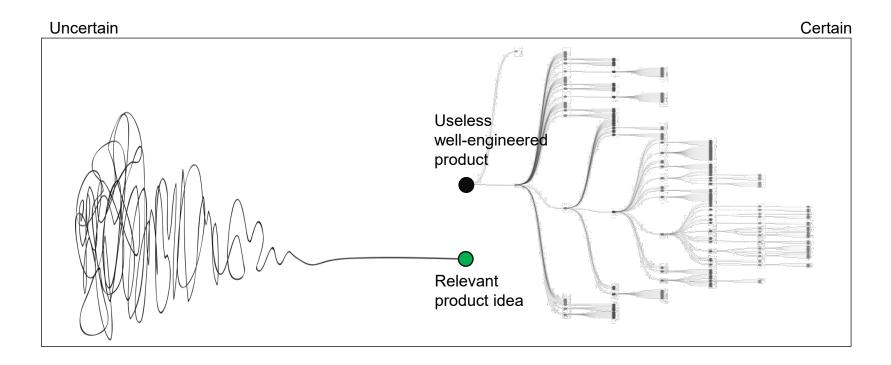
• Dilemma:


- You do not know all the stuff yet
- You need to accommodate learning into the planning
- The learning may result in such discoveries that you need to replan your project

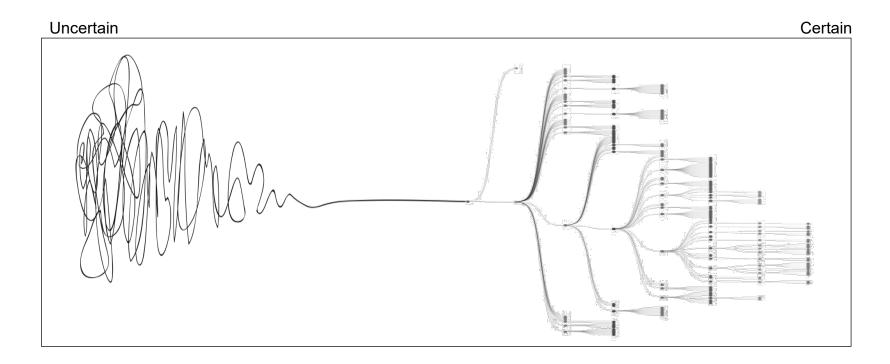
Innovation vs. Engineering project planning



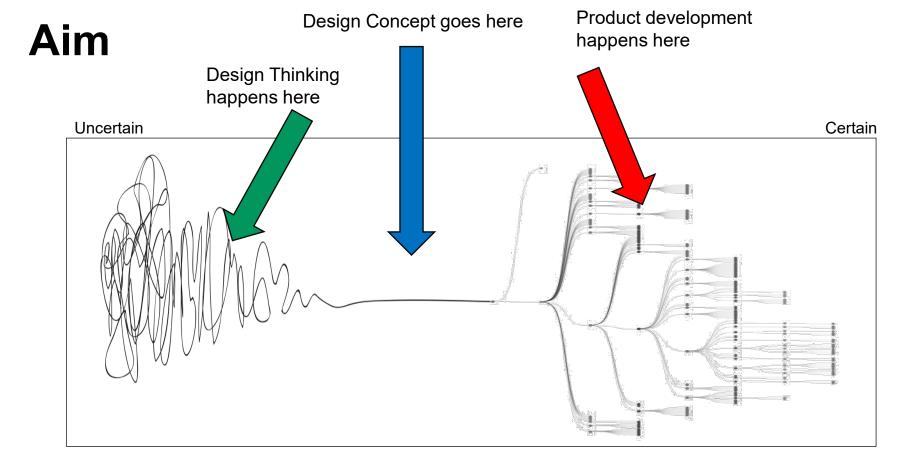
Projects are different


Aalto University School of Electrical Engineering

Projects are different

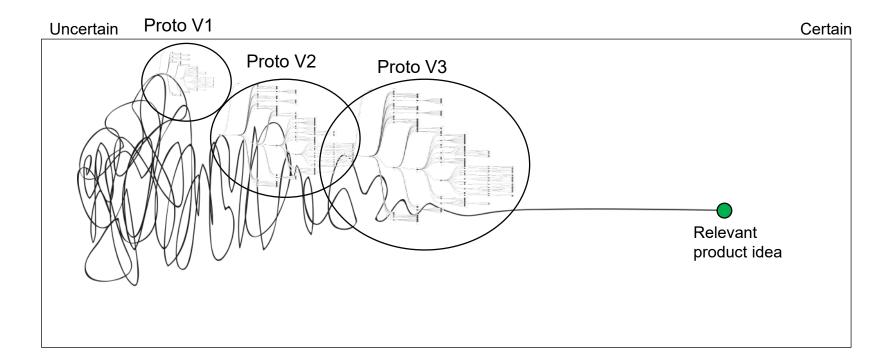


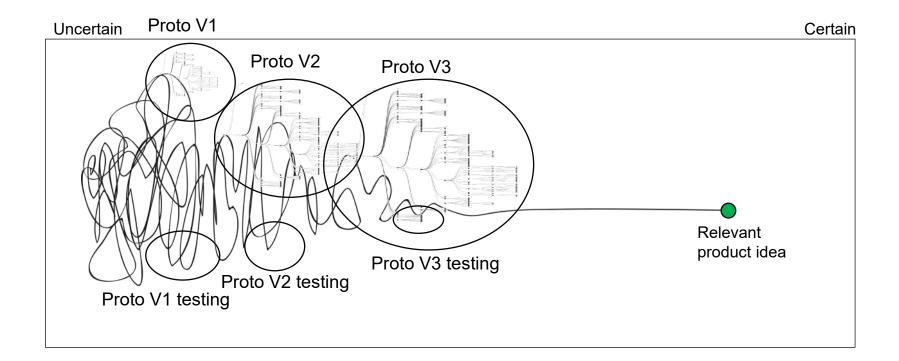
Projects are different



Aalto University School of Electrical Engineering

Aim





The DTAP23 case

The DTAP23 case

Aalto University School of Electrical Engineering

The project

Resource Tracking

• The aim of the project in DTAP23 is to create an IoT product that is related to 'resource tracking'.

- Workshop:
 - Create a mind map -> What is a 'trackable resource'?

This week

- Write your diary and submit it
- Submit your Team Agreement
- Submit your Team's mindmap
- Start the exercises (Fri 14-16, Mon 14-16, Tue 10-12)
 - in Vilhon Paja Lab (former Sähköpaja)

