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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems related to displacement FEA:

  Engineering paradigm in FEM, elements and nodes, nodal quantities and sign

conventions.

  Displacement analysis of simple structures by using the virtual work expressions of the

elements.

  Calculations of the element contributions of force, solid, beam, and plate elements out

of virtual work density of the model and element approximation.
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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PREREQUISITE: FUNDAMENTAL LEMMA OF VARIATION CALCULUS

The fundamental lemma of variation calculus in one form or another is an important tool in

FEM. The lemma tells how to deduce the equilibrium equations of a structure using a virtual

work expression and the principle of virtual work:

 ,u v            : 0vu  v  0u 

 , nu v           : T 0v u v  0u 

 0, ( )u v C     : 0uvd


  v  ( , , ) 0u x y     in 

In mechanics of the materials, variable or function v  is (usually) chosen as the kinematically

admissible variation of displacement u .
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2.1 LINEAR ELASTICITY

Assuming equilibrium of a solid body (a set of particles) inside domain  , the aim is to find

displacement u  of the particles, when external forces or boundary conditions are changed

in some manner:

Equilibrium equations 0f  
    in  ,

Hooke’s law )
1 1 2

(E I u
 

    
 

     in  ,

Boundary conditions n t 
    or u g    on ,

The balance law of angular momentum is satisfied ‘a priori’ by the form of Hooke’s law.
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext 0W W W     u   is a concise representation of the

boundary value problem. In terms of virtual work densities intw  , ext
Vw  ,  and ext

Aw

Internal forces: int int
VW w dV 


 

External forces: ext ext ext
V AW w dV w dA  

 
  

Although the two representations are equivalent, principle of virtual work combines the

equations in a way which is the key for multiple important applications in mechanics. Finite

element method is just one of them.
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DENSITY EXPRESSIONS

Virtual work densities (virtual work per unit volume or area) of the internal forces, external

volume forces, and external surface forces are

TT

int
xy xyxx xx

V yy yy yz yz

zz zz zx zx

w

  
    

   

      
      

         
       
       

,

T

ext
x x

V y y

z z

u f
w u f

u f


 



   
   

    
   
   

 and

T

ext
x x

A y y

z z

u t
w u t

u t


 



   
   

    
   
   

.

The terms of the expressions consist of work conjugate pairs of kinematic and kinetic

quantities.
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GENERALIZED HOOKE’S LAW

The model ( , ) 0g u    for isotropic homogeneous material can be expressed, e.g., in its

compliance form as

Strain-stress: 1
1

1 1 [ ]
1

xx xx

yy yy

zz zz

E
E

   
   

  


     
                    

 and 1
xy xy

yz yz

zx zx
G

 

 

 

   
   

   
   
   

Strain-displacement:
/
/

/

xx x

yy y

zz z

u x
u y

u z






    
   

     
       

and

/ /

/ /

/ /

xy x y

yz y z

zx z x

u y u x

u z u y

u x u z







       
   

        
          

Above, E is the Young’s modulus,  the Poisson’s ratio, and / (2 2 )G E   the shear

modulus. Strain and stress are symmetric (the matrix of components is symmetric).



2-9

2.2 DISPLACEMENT ANALYSIS

  Model the structure as a collection of elements (solid, plate, beam). Derive the element

contributions int exteW W W     in terms of the nodal displacement and rotation

components of the structural coordinate system.

  Sum the element contributions to end up with the virtual work expression of the structure
e

e EW W  . Re-arrange to get the “standard” form T ( ) 0W    a Ka F .

  Use the principle of virtual work 0W   a  and the fundamental lemma of variation

calculus for n a   to deduce the linear equation system 0 Ka F .

  Solve the equations for displacements and rotations a .
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FINITE ELEMENT ANALYSIS

A complex structure is modelled as a collection of structural parts (or elements) modelled

as rigid bodies, beams, plates, or solids. Elements are connected by nodes.

4

2

X

Z

1
2

1

6

7

3

3

4

5
xx

x

x

x

x

x

z
z

z

z

z

z

z
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KINEMATIC AND KINETIC QUANTITIES

The primary quantities of analysis are displacements, rotations, forces and moments at the

connection points of the structural parts. The components of the vector quantities

(magnitude and direction) are taken to be positive in the directions of the coordinate axes.

Vector quantities are invariants in the sense x y z X Y Za a i a j a k a I a J a K     
     , and

can be transformed from one coordinate system to another using the property.

X

Y
Z
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SIGN CONVENTIONS AND NOTATIONS

Displacements, rotations, forces and moments are vector quantities whose components are

positive in the directions of the chosen coordinate axes. The convention may differ from

that used in mechanics of materials courses (be careful with that).

Displacement Force Rotation Moment

Material , ,x y zu u u , ,x y zF F F , ,x y z   , ,x y zM M M

Structural , ,X Y Zu u u , ,X Y ZF F F , ,X Y Z   , ,X Y ZM M M

The basis vectors of the material and structural systems are ( , , )i j k
 

and ( , , )I J K
  

,

respectively!
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 In FE calculations, one needs to express displacement and rotation components in the

material coordinate system in terms of those in the structural coordinate system.

Expressing , ,i j k
 

 (basis vectors of the material coordinate system) in terms of , ,I J K
  

(basis vectors of the structural coordinate system) and coordinate system invariance in

form x y z X Y Za a i a j a k a I a J a K     
     , one obtains

X Y Z

X Y Z

X Y Z

i i i i I
j j j j J
k k k k K

    
                




 
   and

T T
x X

y Y

Zz

a i a I
a j a J

k a Ka

      
              
            




 


x X Y Z X

y X Y Z Y

X Y Z Zz

a i i i a
a j j j a

k k k aa

     
                

 or

T
X X Y Z x

Y X Y Z y

Z X Y Z z

a i i i a
a j j j a
a k k k a

    
                 

. 
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INTERACTION MODELS

name symbol equations

force AF F
 

, AM M
 

fixed Au u  , A 
 

joint A 0u  , A 0M 


slider A 0n u   , A A( ) 0F F n n  
    , A 0M 



A

A
 n

A

θ

u

AF

M
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joint B Au u  , A 0M 


, B 0M 


fixed B Au u  , B A 
 

rigid B A A ABu u    
   , B A 

 

Interaction models define a kinematic quantity (displacements and rotations) or its work

conjugate (forces and moments). In practice, only the kinematic conditions need to be

imposed explicitly.

B
A

A B

A B
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BEAMS, PLATES AND SOLIDS

Elements of the structure may be modelled as rigid bodies, beams, plates, or solids or their

simplified versions considering only the active loading modes, i.e., bar, torsion, and bending

modes for the beam model and thin slab and bending modes for the plate model:

Beam: bar tor xz-bnd xy-bndW W W W W       

Plate: slb bndW W W   

The simple expressions above assume a clever positioning of material coordinate system

and, thereby, uncoupling of the loading modes. Then one may treat the modes in the same

manner as the elements of the structure (virtual work expression is obtained as the sum over

the elements and the loading modes of them).
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BAR MODE

T
1 1

2 2

1 1 1
( )

1 1 12
x x x

x x

u u f hEAW
u uh





      
              

Above, xf , E , and A  are assumed to be constants. In terms of the unit vector in the direction

of the xaxis x X X Y Y Z Zu i u i u i u i u    
   and x X X Y Y Z Zu i u i u i u i u        

  .

x
EA

h
z
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 BENDING MODE

T
1 1

2 21 1
3

2 2
2 22 2

12 6 12 6 6
6 4 6 2

( )
12 6 12 6 612

6 2 6 4

z z

y yyy z

z z

y y

h hu u
EI h h h h hf hW

u h h uh
hh h h h


 



 

        
                           

            

Above, zf  , yyI  and E  are assumed to be constants. In terms of the basis vectors of the xyz 

system zu k u 
   , zu k u  

 , y j  


, and y j  


.

xEIyy

h
z
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FORCE ELEMENT

External point forces and moments are assumed to act on the joints. They are treated as

elements associated with one node only. Virtual work expression is usually simplest in the

structural coordinate system:

T T
X X X X

Y Y Y Y

Z Z Z Z

u F M
W u F M

u F M

 
  

 

       
               
              

Above, XF , YF , ZF  and XM , YM , ZM   are the given external force and moment

components. A rigid body can be modeled as a particle at the center of mass connected to

the other joints of the body by rigid links!

X
ZY

F

M
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EXAMPLE 2.1 A bar truss is loaded by a point force having magnitude F as shown in the

figure. Determine the nodal displacements. Cross-sectional area of bar 1-2 is A and that for

bar 3-2 8A . Young’s modulus is E and weight is omitted.

Answer 1

1

1
2

X

Z

u LF
u EA

   
   

  

X
Z

L

3

21

2

1

L
F

3

x

x
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 For element 1, the relationships between the nodal displacement components in the

material and structural systems are 1 0xu   and 2 2x Xu u . Element contribution 1W  to

the virtual work expression of the structure is

T
1

2 2
2 2

0 01 1 0
( )

1 1 0 X X
X X

EA EAW u u
u uL L

 


      
                

.

 For element 2, 3 0xu   and 2 2 2( ) / 2x X Zu u u  . Element contribution takes the form

T
2

2 2 2 2

0 01 1 01 8 1( )
1 1 02 2 2X Z X Z

E AW
u u u uL


 

      
               



2
2 2 2 2( )( )X Z X Z

EAW u u u u
L

      .

 Virtual work expression of the point force follows from the definition of work
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3
2ZW u F  .

 Virtual work expression of the structure is obtained as the sum of the element

contributions. Then

2 2 2 2 2 2 2( )( )X X X Z X Z Z
EA EAW u u u u u u u F
L L

          

T
2 2

2 2

2 1 0
( )

1 1
X X

Z Z

u uEAW
u u FL





      

        
      

.

 Using the principle of virtual work 0W   a and the fundamental lemma of variation

calculus

”standard” form
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2

2

2 1 0
0

1 1
X

Z

uEA
u FL

    
     

    
 2

2

1
2

X

Z

u LF
u EA

   
   

  
. 

 The Mathematica description of the problem and solution are given by
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EXAMPLE 2.2 Consider the beam truss shown. Determine the displacements and rotations

of nodes 2 and 4. Assume that the beams are rigid in the axial directions so that the axial

strain vanishes. Cross-sections and lengths are the same and Young’s modulus E   is

constant.

Answer
4

2 4
3

112X X
fLu u
EI

   ,
3

2
19

1008Y
fL
EI

  , and
3

4
5

1008Y
fL
EI

 

1

1

Z

X
2

3

2 4

3

x
x

z

x

z

z
t

t

z

y
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 Only the bending in XZ-plane needs to be accounted for. The displacement and rotation

components of the structure are 2Xu , 2Y , and 4Y . As the axial strain of beam 2

vanishes, axial displacements satisfy 4 2X Xu u .

T

2 2
1

3
2 2

2 22 2

12 6 12 60 0
0 06 4 6 2

( )
12 6 12 6

6 2 6 4
X X

Y Y

L L

L L L LEIW
u uL LL

L L L L



 

      
                 

        

2 2 2 2( , )z X y Yu u   

T

2 2
2 22

3

2 24 4

12 6 12 60 0
6 4 6 2

( )
0 012 6 12 6

6 2 6 4

Y Y

Y Y

L L

L L L LEIW
L LL

L L L L

 


 

      
                 

        

2 2 4 4( , )y Y y Y    
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T
2 2

2 2
4 43

3

2 2

12 6 12 6 6
6 4 6 2

( )
0 12 6 12 6 0 612
0 06 2 6 4

X X

Y Y

L Lu u
L L L L LEI fLW

L LL
LL L L L


 



         
                           

            

4 2( )z Xu u 

 Virtual work expression of the structure is

T
2 2

1 2 3 2 2
2 23

2 24 4

24 6 6 6
( 6 8 2 0 )

12
6 2 8

X X

Y Y

Y Y

L Lu u
EI fLW W W W L L L
L LL L L


     

 

       
                 

             

.

 Principle of virtual work 0W   a and the fundamental lemma of variation calculus

give
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2
2 2

23
2 2 4

24 6 6 6
6 8 2 0 0

12
6 2 8

X

Y

Y

L L u
EI fLL L L
L LL L L




     
          

         


2 3

2

4

27
19

1008
5

X

Y

Y

u L
fL

EI



   
      
      

. 

 In the Mathematica code calculation, horizontal displacements of nodes 2 and 4 are

forced to be same ( 4 2X Xu u )
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2.3 ELEMENT CONTRIBUTIONS

Virtual work expressions for the solid, beam, plate elements combine virtual work densities

representing the model and a case dependent approximation. To derive the expression for

an element:

   Start with the virtual work densities intw  and extw  of the formulae collection (if not

available there, derive the expression in the manner discussed in MEC-E1050).

  Represent the unknown functions by interpolation of the nodal displacement and

rotations (see formulae collection). Substitute the approximations into the density

expressions.

  Integrate the virtual work density over the domain occupied by the element to get W .
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ELEMENT APPROXIMATION

Approximation of a function is a polynomial interpolant of the nodal displacement and

rotations in terms of shape functions. In displacement analysis, shape functions depend on

( , , )x y z  and the nodal values are parameters to be evaluated by FEM.

Approximation Tu N a

Shape functions T
1 2{ ( , , ) ( , , ) ( , , )}nN x y z N x y z N x y zN 

Parameters T
1 2{a a a }na 

Nodal parameters a { , , , , , }x y z x y zu u u     may be just displacement or rotation

components or a mixture of them (as with the Bernoulli beam model).

always of the same form!
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ELEMENT GEOMETRY

ξ

Ω

2

2

η

1

1

ξ

η

Ω

1

1

ξ

η

Ω

1

ξ

η

Ω

ζ

1

1
2 ξ

Ω

1 ξ

Ω

1

1

1

ξ

η

Ω

ζ
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QUADRATIC SHAPE FUNCTIONS

Piecewise quadratic approximation is continuous in  and second order polynomial inside

the elements. In a typical element e

Approximation: Tu  N a

Nodal values:  T
1 2 3u u ua

Shape functions:

2
1

2

3

1 3 2
4 (1 )

(2 1)

N
N
N

 
 
 

   
       

      

N , x
h

 

More nodes can be used to generate higher order approximations!

1 32
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LINEAR SHAPE FUNCTIONS

A piecewise linear approximation is continuous in  and linear inside each element of

triangle shape. In a typical element

Approximation: Tu  N a

Nodal values:  T
1 2 3u u ua

Shape functions:

1

1 2 3

1 2 3

1 1 1 1
x x x x
y y y y


   

           

N

Triangle element is the simplest element in two dimensions. Division of any 2D domain into

triangles is always possible, which makes the element quite useful.

1

2

3

1

1
1
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CUBIC SHAPE FUNCTIONS

Piecewise cubic approximation has continuous derivatives up to the first order in  and is

a third order polynomial inside the elements.

Approximation: Tu  N a

Nodal values:  1 1 2 2( / ) ( / )u du dx u du dxa

Shape functions:

2
10

2
11

220

221

(1 ) (1 2 )

(1 )

(3 2 )

( 1)

N
N h
N
N h

 

 

 

 

             
   

      

N

In xz plane bending zu u , / ydu dx    and in xy plane bending yu u , / zdu dx  .

20u

21u

11u

1 2

11N

10N

u

20N
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SOLID MODEL

The model does not contain assumptions in addition to those of linear elasticity theory.

T T

int
/ / / / / /
/ [ ] / / / / /
/ / / / / /

u x u x u y v x u y v x
w v y E v y v z w y G v z w y

w z w z w x u z w x u z

  
   

  


                    
                              
                           

,

T

ext
x

y

z

u f
w v f

w f


 




  
      

      

 and

T

ext
x

y

z

u t
w v t

w t


 




  
      

      

 in which

11
[ ] 1

1
E E

 
 
 

  
    
   

.

The solution domain can be represented, e.g, by tetrahedron elements with linear

interpolation of the displacement components ( , , )u x y z , ( , , )v x y z , and ( , , )w x y z
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EXAMPLE 2.3 A tetrahedron of edge length L, density  , and elastic properties E  and 

is subjected to its own weight on a horizontal floor. Calculate the displacement 3Zu of node

3 with one tetrahedron element and linear approximation. Assume that 3 3 0X Yu u  , and

that the bottom surface is fixed.

Answer:
22

3
11

4
2

1Z
gLu
E

 


 
 




3

1

X,x

4 2
Y,y

Z,z

L

L

L

g
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 Linear shape functions can be deduced directly from the figure 1 /N x L , 2 /N y L ,

3 /N z L , and 4 1 / / /N x L y L z L    . However, only the shape function of node 3

is needed as the other nodes are fixed. Approximations to the displacement components

are

0u  , 0v  ,  and 3Z
zw u
L

 ,  giving 0w w
x y

  
 

  and 3
1

Z
w u
z L





.

 When the approximation is substituted there, the virtual work densities of the internal

and external forces simplify to

T

int 3 3
2 2

3 3

1
11

(1 )(1 2 )(1 )(1 2 ) 1

0 0
( )0 0 Z Z

V

Z Z

u uE Ew
L Lu


  

  
     

   







 


                 






2-37

TT

ext
3

3

0 0
0 0

x

V y Z

Zz

u f
z zw v f g u
L L

w u gf


   

  

      
                

            

.

 Virtual work expressions are obtained as integrals of densities over the volume:

3
int int int

3 3
1

(1 )(16 )
1

26 Z Z
LW w dV w ELu u  


 

 
  





 ,

3
ext ext

324 Z
LW w dV g u   

   .

 Finally, principle of virtual work 0W   a with int extW W W     and the

fundamental lemma of variation calculus imply
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22
3

11
4

2
1Z

gLu
E

 


 
 




. 

 For the Mathematica code of the course, the problem description is given by
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BEAM MODEL

In the beam model, the displacement and rotation components to be interpolated on a line

segment of x axis are ( )u x , ( )v x , ( )w x , and ( )x .  Virtual work densities are given by

T

int 2 2 2 2

2 2 2 2

/ /

/ /

/ /

z y

z zz zy

y yz yy

d u dx du dxA S S
d dw d v dx E S I I d v dx GJ
dx dx

S I Id w dx d w dx


  




     
    

       
        

,

T T

ext /
/

x x

y y

z z

u f m
w v f d w dx m

w d v dxf m

 
  

 


      
               

             

.

In what follows, the first and cross moments of the cross-section are assumed to vanish to

disconnect the bar, torsion, and bending modes of the beam ( 0z y yzS S I   ).
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BAR MODE

Assuming a linear interpolation to ( )u x  in terms of the end point displacements 1xu , 2xu ,

virtual work expressions of the internal and external forces take the forms

T
1 1int

2 2

1 1
1 1

x x

x x

u uEAW
u uh





    
         

,

T
1ext

2

1
12

x x

x

u f hW
u




   

    
  

.

Above, xf , E , and A  are assumed to be constants. The relationship between the axial

displacement component and the displacement components in the structural coordinate

system is x X X Y Y Z Zu i u i u i u i u    
  .

x
EA

h
z
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 First, element interpolant Tu  N a and its variation T Tu   N a a N  are substituted

into the virtual work expression to get (here ]0, [h   and d dx  )

0
( )

h
x

d u duW EA uf dx
dx dx
    

T
T T

0 0
h h

x
d dW EA dx f dx
dx dx

     
N Na a a N 

T
T

0 0
( )

h h
x

d dW EA dx f dx
dx dx

    
N Na a N . 

 If the interpolant is taken to be linear, shape functions and the nodal values are given by

1 h x
xh
 

  
 

N ,
11

1
d
dx h

 
  

 
N , 1

2

x

x

u
u
 

  
 

a , and 1

2

x

x

u
u




 

  
 

a
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 If Young’s modulus E, cross-sectional area A, and the distributed force xf  are constants,

integration over the element domain gives (the expressions of the shape functions need

to be substituted now)

T T
1 1

0 02 2

1 11 1 1( )
1 1

h hx x
x

x x

u u h x
W EA dx f dx

u u xh h h





          
           

        
  

T
1 1

2 2

1 1 1
( )

1 1 12
x x x

x x

u u f hEAW
u uh





      
              

. 

Derivation out of virtual work densities works also when Young’s modulus E, cross-

sectional area A, and the distributed force xf  are not constants. Also, approximation to axial

displacement ( )u x  may be chosen in various ways.
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TORSION MODE

Assuming a linear interpolation to ( )x  in terms of the end point rotations 1x  and 2x ,

virtual work expressions of the internal and external forces take the forms

T
1 1int

2 2

1 1
1 1

x x

x x

GJW
h

 


 
    

         
,

T
1ext

2

1
12

x x

x

m hW




   

    
  

.

Above, xm , E , and J  are assumed to be constants. The relationship between the axial

rotation component and the rotation components in the structural coordinate system is

x X X Y Y Z Zi u i i i       
  .

x
GJ

h
z
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BENDING MODE (xz-plane)

Assuming a cubic approximation to ( )w x  in terms of the end point displacements 1zu , 2zu

and rotations 1y  and 2y , virtual work expressions of the internal and external forces

T
1 1

2 21 1int
3

2 2
2 22 2

12 6 12 6

6 4 6 2
12 6 12 6

6 2 6 4

z z

y yyy

z z

y y

h hu u
EI h h h h

W
u h h uh

h h h h


 



 

      
    
             

        

T
1

1ext

2

2

6

612

z

y z

z

y

u

hf hW
u

h








   
          
   
     

Above, zf , yyI  and E  are assumed to be constants.

xEIyy

h
z
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BENDING MODE (xy-plane)

Assuming a cubic approximation to ( )v x  in terms of point displacements 1yu , 2yu  and

rotations 1z  and 2z , virtual work expressions of the internal and external forces

T
1 1

2 2
1 1int

3
2 2

2 2
2 2

12 6 12 6

6 4 6 2
12 6 12 6

6 2 6 4

y y

z zzz

y y

z z

h hu u

h h h hEIW
u uh hh

h h h h



 




 

    
    

               
        

,

1

1ext

2

2

6

612

y

yz

y

z

u
f h h

W
u

h










   
          
   
     

.

Above, yf  , zzI  and E  are assumed to be constants.

xEIzz

h
y
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EXAMPLE 2.4 The Bernoulli beam of the figure is loaded by its own weight f gA and

a point force F acting on the right end. Determine the displacement and rotation of the right

end with the Mathematica code of MEC-E8001. The x-axis of the material coordinate

system is placed at the geometric centroid of the rectangle cross-section. Beam cross-section

properties A , yyI , zzI ,  and material properties E ,  are constants.

Answer: 2X
FLu
EA

 and
3

2
1
48Y

zz

gAL
EI
 

L

Z,y

X,x

F
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 Bernoulli beam element of the Mathematica code requires the orientation of the y axis

unless y axis and Y axis are aligned. Orientation is given by additional parameter

defining the components of j


 in the structural coordinate system:
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PLATE MODEL

Virtual work densities combine the plane-stress and plate bending modes. Assuming that

the material coordinate system is placed at the geometric centroid

T2 2T
3

int 2 2

2

// /
/ [ ] / / [ ]

12
/ / / / 2 /

w xu x u x
tw v y t E v y w y E

u y v x u y v x w x y
 


  

  


                             
                      

2 2

2 2

2

/

/

2 /

w x

w y

w x y

  
     
 
    

,

T

ext
x

y

z

u f
w v f

w f


 




  
      

      

,  and

T

ext
x

y

z

u t
w v t

w t


 




  
      

      

.

Approximation to the displacement components ( , )u x y , ( , )v x y , ( , )w x y  should be

continuous and ( , )w x y  should also have continuous derivatives at the element interfaces.
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EXAMPLE 2.5. Consider the thin triangular structure shown. Young’s modulus E,

Poisson’s ratio , and thickness t are constants. Distributed external force vanishes. Assume

plane-stress conditions, XY plane deformation and determine the displacement of node 1

when the force components acting on the node are as shown in the figure.

Answer: 1

1

2 1
1

(1 )(1 )
1

X

Y

F
Et

u
u

 


   
   

 




 



1 2

3

F

x,X

y,Y

L

L

F

1

2
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  Nodes 2 are 3 are fixed and the non-zero displacement components are 1Xu and 1Yu .

Linear shape functions 1 ( ) /N L x y L   , 2 /N x L  and 3 /N y L  are easy to

deduce from the figure. Therefore

1

1

X

Y

uu L x y
uv L

    
   

   
 1

1

/ 1
/

X

Y

uu x
uv x L

    
        

 and 1

1

/ 1
/

X

Y

uu y
uv y L

    
        

.

 Virtual work density of internal forces is given by

T
1 1

int
1 12 2

1 1 1 1

1 0
1 1 0

1 0 0 (1 ) / 2

X X

Y Y

X Y X Y

u u
tEw u u

Lu u u u

 
  

  


     
                    

.

 Integration over the triangular domain gives (integrand is constant)
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T
1 1

1
1 12

1 1 1 1

1 0
1 1 0
21 0 0 (1 ) / 2

X X

Y Y

X Y X Y

u u
tEW u u

u u u u

 
  

  

     
                    



T
1 11

2
1 1

3 11
1 341

X X

Y Y

u utEW
u u

  


  

     
           

.

 Virtual work expression for the point forces follows from the definition of work

T
12

1

X

Y

u F
W

u F





   
      

 .

 Principle of virtual work in the form 1 2 0W W W      a and the fundamental

lemma of variation calculus give
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T
1 1

2
1 1

3 1 11( ) 0
1 3 141

X X

Y Y

u utEW F
u u

  


  

       
                 

1

1

X

Y

u
u




 
 
 



1
2

1

3 1 11 0
1 3 141

X

Y

utE F
u

 
 

      
           



1 2

1

1
(1 )

1
X

Y

u F
u tE

   
     

  
. 

The point forces acting on a thin slab should be considered as “equivalent nodal forces” i.e.

just representations of tractions acting on some part of the boundary. Under the action of an

actual point force, displacement becomes non-bounded. In practice, numerical solution to

the displacement at the point of action increases when the mesh is refined.
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 In Mathematica code of the course, the problem description is given by
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EXAMPLE 2.6 Consider a plate strip loaded by pressure p acting on the upper surface.

Determine the deflection w  at the center point according to the Kirchhoff model. Thickness,

length and width of the plate are t , L, and H, respectively. Young’s modulus E , and

Poisson’s ratio  are constants. Use the one parameter approximation

0
2 2(1 / ) )( ) ( /x Lx a xw L .

Answer: 3 21 ( )
32

) (1Lw L p
t E

 

x,X

y,Yz,Z

L

p

H
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 Approximation satisfies the displacement boundary conditions ‘a priori’ and contains a

free parameter 0a  (not associated with any node) to be solved by using the principle of

virtual work:

2 2
0 1 (( ) )x x

L
w a

L
 

2

0
2

2 2
2 [1 ]6 6( )

L
w a x x

L Lx



   and

2 2

2 0w w
x yy

 
 
 

.

 When the approximation is substituted there, virtual work densities (formulae collection)

simplify to

0
2

3
int 2

0 2 4 6 61 [1 ]
3(1 )

( )Etw a a
LL

x x
L

 


   


,

2
0

2ext ) ((1 )w a px x
L L

    .
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 Integrations over the domain ]0, [ ]0, [L H   give the virtual works of internal and

external forces

t
3

3
int in

0 0 2(1 )
1

15
HEtW w d

L
a a  




   
 ,

ext ext
0

1
30

a LHW w d p  
    .

 Principle of virtual work int ext 0W W W      a and the fundamental lemma of

variation calculus give finally 0a

3

0 023 0(
( 31

1 1 )
15 ) 0

LH
L

HEtW a a p 


 


  2
0 3

41
2

(1 )pa
t
L

E
   . 
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 The problem can be solved numerically also by using the Reissner-Mindlin plate model

and plate bending element of the Mathematica code. For example, assuming parameter

values 3( / ) / 10p L t E  , 0.33  , / 0.3H L  ,  and / 0.01t L   (a thin plate), the one

parameter approximation to displacement gives / 0.278w L    at the centerpoint

whereas the solution on a regular (rough) mesh of about 300 unknown

displacement/rotation components gives / 0.278w L    (a fine mesh gives

/ 0.289w L   )


