MEC-E8001 Finite Element Analysis, week 3/2023

1. Determine the nodal displacements when force F is acting
on the structure as shown. The cross-sectional area of bars
1,2,3 and 4 is A and the cross-sectional area of bars 5 and
6is 24/2A. Young’s modulus of the material is E. Use the
principle of virtual work.
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Joint between the beams of the figure is frictionless.
Force F acting on the joint and displacement of the beam

are restricted to the XZ-plane. Determine the rotations i

and displacement at the joint. Use two beam elements.
The second moment of area | and Young’s modulus of
the material E are constants.
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3. Determine the rotation &, at node 2 of the structure loaded by -
a point moment (magnitude M) acting on node 2. Use beam ele-
ments (1) and (2) of equal length and a point moment element
(3). Assume that the beams are inextensible in the axial direc-
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tions. Young’s modulus of material E and the second moment of

area | are constants.

Answer @&, = —%%

Frame of the figure consists of a rigid body (2) and
beam elements (1) and (3). Determine the non-zero
displacements and rotations. The beams are identical

and can be assumed rigid in the axial directions. Dis-  f

placements are confined to the XZ-plane. Young’s
modulus E, second moment of area | , and distributed
force f acting on element 1 are constants.
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Consider a bar of length L loaded by its own weight (figure). Determine the
displacement uy, at the free end. Start with the virtual work density ex-
pression  OWgq =—(dou/dx)EA(du/dx)+ouf, and  approximation
u=(@-x/L)uy +(x/L)uy,. Cross-sectional area A, acceleration by grav-
ity g, and material properties E and p are constants.

2
Answer Uy, = ngé

The XZ-plane structure shown consists of two massless
beams and a homogeneous disk considered as a rigid
body. Determine the displacement uz, and rotation
6, atnode 2. Young’s modulus E of the beam material
and the second moment of area | are constants.

3
Answer uzzzz—i% and &, =0

A long dam of homogeneous, isotropic, linearly elastic mate-
rial, is subjected to water pressure on one side. Material prop-
erties E and v are constants. Determine the displacement
components uy, and uy, of node 1. Nodes 2 and 3 are fixed.
Use a three-node element and assume plane strain conditions.
Consider a slab of thickness t in calculations. The peak value
of the linearly varying pressure is p .

Answer Uy =§p?|'(1+v) , Uyp =0

A thin slab (1) of square shape is loaded by a point force (2) as
shown in the figure. Derive the relationship between the force F
and the displacement uy 4 of its point of action. Young’s mod-
ulus E, Poisson’s ratio v, and thickness of the slab t are con-
stants. The external distributed forces are zeros. Assume plane-
stress conditions and use bilinear approximation.
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A structure, consisting of a thin slab and a bar, is loaded by a | Y
horizontal force F acting on node 1. Material properties are E +— R
and v, thickness of the slab is t and the cross-sectional area of the FOED -
bar is A. Determine displacement of node 1 uy; and uy; by using

a linear bar element and a linear plane-stress element.
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Answer Uy, =-4 £ and uy;=0

. A plate, loaded by point force F acting at the free
corner, is simply supported on two edges and free
on the other two edges as shown in the figure. De-
termine the parameter a; of approximation
w(X,y)=ag(x/L)(y/L) and displacement at the
center point. Use the virtual work density of the
plate bending mode with constant E, v, p and t.
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Determine the nodal displacements when force F is acting on N @ . ’
the structure as shown. The cross-sectional area of bars 1,2,3 . @ N '

and 4 is A and the cross-sectional area of bars 5 and 6 is @ 7 @
2J2A. Young’s modulus of the material is E. Use the prin- 4 @ '

ciple of virtual work. v

Y

Solution

Element and node tables contain the information needed in displacement and stress analysis of the
structure. In hand calculations, it is often enough to complete the figure by the material coordinate
systems and express the nodal displacements/rotations in terms symbols for the nodal displacements
and rotations and/or values known a priori. The components in the material coordinate systems can
also be deduced directly form the figure (in simple cases). Virtual work expression of the bar element
IS given by
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i ou 1 -1||u 1

é\N:é\Nlnt_i_é\NeXt:_ 5 x1 (E x1 _M )
Uyo hi-1 1 Uyo 2 1

Nodal displacements/rotations of the structure are zeros except uy, and uz,. Element contributions
in their virtual work forms are (nodal displacements of the material coordinate system need to be
expressed in terms of the structural system components)

EA
Bar 1: UX1=0, Uyo =Ux é\NlZ—&UXZTUXz,

EA
Bar2: uy, =Uz,, Uz =0: éW2=—5u22Tu22,

Bar3: uy, =0 and u,3=0: sw3=0,
Bar4: uy =0 and uy,=0: oW*=0,
Bar5: Uy =0 andu,3=0: SW°=0,
1 6__

EA
Bar 6: UX4=0,UX2=\/§(UX2—U22): OW” = (5UX2_5UZZ)T(UX2_UZZ)

Force 7: oW ' =—5uy,F.
Virtual work expression of the structure is sum of the element contributions

OW =" OWE =W+ W2+ W3+ oW +sW° +oW° + oW ' =



oW :_5UX2%UX2 —5U22%32 +0+0+0—(5UX2 —5U22)%(UXZ —Uzz)—5U22F =

T
ou 2 -1||u 0
SW = _JoUx2 (E X2 | ).
5U22 L1 2 Uzo -F
Principle of virtual work oW =0 Va and the fundamental lemma of variation calculus in the form
sa"R=0 Véa < R=0 imply
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Joint between the beams of the figure is frictionless. Force
F acting on the joint and displacement of the beam are re-
stricted to the XZ — plane. Determine the rotations and dis-
placement at the joint. Use two beam elements. The second
moment of area | and Young’s modulus of the material E are
constants.

Solution

Only the displacement in Z —direction and rotation in Y — direction matter in the planar beam bend-
ing problem. Rotation may not be continuous at the joint and, therefore, a double node with labels 2
and 3 are introduced there. At the joint, displacement is continuous and therefore uz3 =uz,.

For element 1, the non-zero displacement/rotation components of the material coordinate system are
U,p =Uz, and 6y, = & ,. The element contribution of a xz —plane beam in bending (formulae col-
lection) takes the form (the

T [12 -6L -12 —6L]
0 sup,| T [24 12U 0]fy,,
swio_l 0 | Erj-6L 4> 6L 2%|] 0 | 5o, b Elial a2 olla,
T |sug,| 13]-12 6L 12 6L ||ug,| 2[ 218 2
563 0 0 0|6
56 6L 212 6L 4L (%2

For element 2, the non-zero displacement/rotation components of the material coordinate system are
Usp =Uz3=Uz, and 6y, = 6 3. The element contribution is

suz,)t [ 3 8L -3 -8Ljfu,, .
S6s| EI|-3L 42 3 212||4 duzp|" | 3 0 8Lifuz
SW2=_ 3| El 3(__ sa,t Bl o o o la,
0 [ 2.3 3 3L 3 3L|]O NE
0 ’ 2(| 0 b3 3L 0 412G
3L 212 3L 41|

Element 3 is a point force whose virtual work expression follows from the definition of work

T

5U22 F
W3 =FSuyy =156, {0
S63] |0

Virtual work expression of a structure is the sum of the element contributions

Suy,)T ) 271 12U 8L (u,,) (F
SW =W+ oW? +oW3 =—] 58, (? 12L 82 0 [S6,+—401).
53 3L 0 4?|(&s3]) (0

Principle of virtual work SW =0 Vvda and the fundamental lemma of variation calculus imply the
linear equation system



27 12L -3L](y E
El Z2

F12L 8L2 0 [{&,t-{0}=0.
3L 0 4% |&%s) (0

Solving a system of linear equations is one of the basic tasks in FEM (reduction to a triangular sys-
tem by row operations works well in hand calculations). Multiply the first row by 4 and the third
row by 3/L to get

EI 108 48L -12L Uzp 4F

F12L 8Ll2 0 [{&,i—-10 t=0.
-9 0 12L ||&3] | O

Add the last row to the first row to get

99 48L O u AF
El 72

F12L 82 0 |{4,+—4 0 +=0.
-9 0 12L||&3| |0

Then multiply the second row by -6/ L

99 48L 0 Uzo 4F
Sll2 L 0 [, -1 0 1=0
2L 9 0 12L|las |0

and add the second row to the first row to get

27 0 0 Uzo 4F
Sz 8L 0 [{, -] 0 =0,
2L 9 0 12L|las |0

After these steps, the matrix is a lower diagonal one, and solution follows by considering the equa-
tions in a proper order one at a time:

8FL3 721 4 FL2 9 2 FL2
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Determine the rotation &, at node 2 of the structure loaded by a
point moment (magnitude M) acting on node 2. Use beam elements |
(1) and (2) of equal length and a point moment element (3). Assume
that the beams are inextensible in the axial directions. Young’s mod-
ulus of material E and the second moment of area | are constants.

Solution

In a planar problem, torsion and out-plane bending deformation modes can be omitted. As beams are
assumed to be inextensible in the axial direction and there are no axial distributed forces, the bar
mode virtual work expression vanishes. Virtual work expressions of the beam xz —plane bending el-
ement and point force/moment elements are given by

Suy )" (12 —6h -12 —6h](uy 6
90y | Ely|-6h 4h® 6h 2h?||61| f,h|-h

T \Suy,| 3 |-12 6h 12 6h ||u,| 12 |6 )
66y2 | —-6h 2h? 6h 4h? ||y h
T T

ouxy| [Fx1| [90x1| |Mx1
OW =1 Suyq Fy1p+q 061 My
ouz1 ) | Fz1 0671) |(Mz1

Nodal displacements/rotations of the structure are clearly zeros except those for node 2. Displacement
at node 2 vanishes also as both beams are inextensible in the axial directions. Therefore, the only non-
zero displacement/rotation component of the structure is &, .

Beam 1: U, =0, 6 =0, U, =0, and 6, =&,

0 T [ 12 -6L -12 -6L]| 0

0 | EIl-6L 42 6L 2L%]|]| 0 El
owl=— = =56 ,4— 6.

o 13]/-12 6L 12 6L || O ot

56 6L 212 6L 4% ||tz

Beam 2: u, =0, 6y1 =65, U;, =0, and Gy, =0

0 T [ 12 -6L -12 -6L]| 0

56, EI|-6L 42 6L 212 ||&> El
- = =—00,04—6 5.
o (3/-12 6L 12 6L || O REAILE:

0 6L 21> 6L 42|l 0

SW2 =

Point moment 3:



T T
ouxa| |Fx2| [90x2] [Mx2

3
OW™ =306Uyp ¢ ¢ Fya +9062 (Myp r=—06 M.
ouz; Fz2 0677 Mz,

Virtual work expression of the structure is sum of the element contributions

W= oW® =W +oW?+ow® =

OW =504 - 364 24 8y + 0= 36y M = -3 (8= 6y +M).

Principle of virtual work oW =0 Vda and the fundamental lemma of variation calculus in the form

S5a'R=0 Vda < R=0 imply
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The frame of the figure consists of a rigid body (2) and
beam elements (1) and (3). Determine the non-zero dis-
placements and rotations. The beams are identical and can
be assumed rigid in the axial directions. Displacements are
confined to the XZ —plane. Young’s modulus E, second
moment of area | , and distributed force f acting on element

1 are constants.

Solution

ARERERERERT,

As element 2 is a rigid body and the other beam are rigid in the axial directions, only the horizontal
displacement components u,3 =uy, are non-zeros. Element contributions to the virtual work ex-

pression are

07 [12 -6L -12 —6L]
sl 0 EI|-6L 42 6L 22
~|uz,| T13]-12 6L 12 6L
0 6L 21% 6L 4L?]

SW? =0,
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w3 0 | EI|-6L 412 6L 212
~|Suz,| 13]-12 6L 12 6L
0 6L 21% 6L 4L?]
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Virtual work expression of the structure is the sum of element contributions

El

OW = oW+ 5w 2 + w3 =—5u22(24Fu22 —%).

Principle of virtual work SW =0 Véa and the fundamental lemma of variation calculus imply
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Consider a bar of length L loaded by its own weight (figure). Determine the
displacement uy, at the free end. Start with the virtual work density ex- @
pression  owg =—(dou/dx)EA(du/dx)+ouf, and approximation
u=(@@-x/L)uy +(x/L)uy,. Cross-sectional area A, acceleration by grav-
ity g and material properties E and p are constants.

- T X
Solution

The concise representation of the element contribution consists of a virtual work density expression
and approximations to the displacement and rotation components. Approximations are just substituted
into the density expression followed by integration over the domain occupied by the element (line
segment, triangle etc.). Here the two building blocks are

dou du X X
OWn =———EA—+0ouf, and u=(1- Uy +—Uy».
Q dx dx X ( L) x1 L X2

The quantities needed in the virtual work density are the axial displacement, variation of the axial
displacement, and variation of the derivative of the axial displacement

T T T
U= 1-x/L Uyq — Su= 1-x/L §UX1 _ §UX1 1-x/L ’
x/L Uyo x/L §UX2 §UX2 x/L
d_u_i -1 T Uyq N dﬂ_i -1 T §UX1 _i §UX1 T -1
dx L|[1] |uy dx L|1) |Suyn| L|dun| (1]

When the approximation is substituted there, virtual work density expression of the bar model takes
the form

T T T
ou -1 -1 o 1-x/L

Swg =9 gAY | 5yp =11t eal Ua |, Jota XILLe

dx dx L §UX2 1 L1 UX2 §UX2 x/L

T T

ou -1 -1 u 1-x/L
swg =—{°0al (T Lgat | Ji=x/ f) o

Suyo /L L|1] |ug x/L

Sug|' EA[1 —1](u 1-x/L

§UX2 |_2 -1 1 Uyo x/L

Finally, integration over the element gives the virtual work expression of the bar element

.
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Finding the displacement of the free end follows the usual lines. Here, f, = pgA, uy; =uyx; =0, and

Uy2 =Ux2
T
0 EAl 1 -1 0 AL (1 EA AL
W = (— S ) = Uy (g~ P2) =0 Vaux, o
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The XZ —plane structure shown consists of two massless
beams and a homogeneous disk of mass m considered as a
rigid body. Determine the displacement u;, and rotation
6, at node 2. Young’s modulus E of the beam material
and the second moment of area | are constants.

Solution

Only the displacement in the Z — direction and rotation in the Y — direction matter in the planar beam
bending problem. From the figure, the non-zero displacement and rotation components are uz, and
&, . For element 1, the non-zero displacement/rotation components of the material coordinate sys-
tem are u,, =uUz, and 6y, =& ,. The element contribution of a plane beam in bending (formulae
collection) is

0 T [ 12 -6L -12 -6L]| 0

swi__) O | Er[-6L a2 6L 22| 0|  ([ouzp|"EI[12 6L [uz,
©|uzo| 13112 6L 12 6L ||uza| 9G] 13|eL 4L?||&2)°

56 6L 21> 6L 4% ||&2

For element 2, the non-zero displacement/rotation components of the material coordinate system are
Uzp =Uzp and 6y, =6 ,. The element contribution of a xz-plane beam in bending is

- PO
SUiz, 12 -6L -12 -6L](y,, i
S, | EI|-6L 4% 6L 212 ||&,| ([duzp] EIf 12 —6L](uz,
0 [ 18]-12 6L 12 6L || 0| |6&,| 13|-6L 42|64,
0 6L 21> 6L 42|l 0

W2 =

Element 3 is arigid body. In static displacement analysis, only the weight acting at the mass centroid
matters. Virtual work expression of the point force of magnitude mg follows from the definition of
work

Suy, )" mg
é\NBng§U22: 22 .
S6,| |0

Virtual work expression of a structure is the sum of the element contributions

T
Su 240 |(u m
éW=éW1+éW2+éW3=—{ zz} (E_3| , {zz}_{ 9})_
06y ) 3|0 8L (G2 0
Principle of virtual work SW =0 V¢Ja and the fundamental lemma of variation calculus imply the
linear equation system

El[24 0 |(uzy] (mg 1 mgL®
|_3{0 8L2:H6\(2 0 T 22T %2



A long dam of homogeneous, isotropic, linearly elastic material, | y,Y
IS subjected to water pressure on one side. Material properties E \
and v are constants. Determine the displacement components P
Uyq and uy, of node 1. Nodes 2 and 3 are fixed. Use a three-node L =
element and assume plane strain conditions. Consider a slab of =
thickness t in calculations. The peak value of the linearly varying ==

pressure is p. P l

Solution
Under the plane strain conditions, the virtual work densities of thin slab are

T

oou | ox ou / ox s T (f
i u
SWit = — ooV 1 oy t[E], ov/oy and sw&t :{5 } {fx} where
v
ou 1 8y + 05V 1 x ou | dy +ov | ox y
l1-v v 0

E

= — 1-v 0
Q+v)Q-2v)

[El. v
0 0 (@-2v)/2

The external forces t, and t, (force per unit length in this case) acting on the element edges can be
taken into account by a separate force element with the density expression (per unit length)

T
ou| |t
5WeXt — X
Q= sy t,
although the expression is actually part of the thin slab model. The approximation on the boundary is
just the restriction of the element approximation to the boundary.

Only the shape function for node 1 is needed as the other nodes are fixed (displacement vanishes). In
terms of the displacement components uy; and uy; of node 1, element approximations of the dis-
placement components and their derivatives are

u:lqu = a—u=0 and a—u=£Ux1,
L OX oy L

v=1uY1 = @=o and @:iqu.
L OX oy L

When the approximation is substituted there, the virtual work densities simplify to

o ' - 1-v v 0 0
swilt = _Jsuy, /LY ——— 1- 0 U /Ll =
e VS ina—an| L Vi
Suyq /L 0 0 (@1-2v)/2]|uyq/L



Et 0

swint —_%Ux T 2w +n)L? Ux1
Q 5UY1 0 Et(l—V) Uy1 ’

1L+v)(1-2v)L?

T T T
St = Sul’ b | _Jouxay/L|" [pt@-y/L)| _[ouxa| |ptd-y/L)y/L |
@ sv] 1ty lougy/L 0 SUy1 0
Integrations over the element and edge 2-1 give the virtual work expressions (notice that the virtual
work density of internal forces is constant)

Et

.
L g LT Suxy| | 4+v) Ux1
o 0 SUyy 0 Etl-v) !

Uy
2(1+v)(1-2v)

T
ou tL/6

oW = [ 5Wg§dy:{5 Xl} {p }

Uyq 0

Principle of virtual work oW =oW'™ + sW®' =0 vsa and the fundamental lemma of variation
calculus give

Et

0
SW :_{§Ux1}T( 4(1+V) {Ux]}_{ptl_/6}):0 N
5UY1 0 Et(l—V) Uyq 0

2(1+v)(1-2v)

Et

0
41+v) Ux1 ptL/6
— =0 =
0 Et(l—V) Uyq 0

2(1+v)(1-2v)

Ux1 :ép?L(l-l-V) and UY]_ZO. €«



A thin slab (1) of square shape is loaded by a point force (2) as shown
in the figure. Derive the relationship between the force F and the
displacement uy 4 of its point of action. Young’s modulus E, Pois-
son’s ratio v, and thickness of the slab t are constants. The external
distributed forces are zeros. Assume plane stress conditions and use
bilinear approximation.

Solution
Let us start with the shape functions of element 1 and approximations. As nodes 1, 2, and 3 are fixed,
it is enough to deduce the shape function of node 4

Xy
Ny=—.
4 L2

Approximations to the displacement components and their derivatives with respect to x and y are

Xy ou 'y ou X
= =——Uy,4, and —=—U
X4 oy X4

u=—-u , —

When the approximations are substituted there, the virtual work density of thin slab model simplifies
to (plane stress conditions, only the internal part is needed)

osulox " A ou / x
Swit = — a6V | oy t v 1 0 ov /oy -
asuloy+asviax] 1TV |0 0 (=v)/2||ouloy+aviox
: € 1 1-v
SWI = —SUy g ——=— (Y2 +——X?)Uy 4.
o) X41—2L4(y 5 X xa

Integration over the domain occupied by the element gives the element contribution

1 L oL int 3 Et 3—v
owr=[" |, §Wdedy——§ux4€1 Uy g

Virtual work expression of the point force (element 2) follows from the definition of work
2 _

OW* =3duy 4F .

Virtual work expression of a structure is the sum of element contributions

Et 3—v
SW = oW+ w2 =5UX4(_?1 .

Ux4+F).



Finally, principle of virtual work in the form oW =0 V¢da and the fundamental lemma of variation
calculus imply that

_SF1-v
Et 3—v

Ux 4



A structure, consisting of a thin slab and a bar, is loaded by a hori-
zontal force F acting on node 1. Material properties are E and v,
thickness of the slab is t, and the cross-sectional area of the bar A are
constants. Determine displacement components uy; and uy; of
node 1 by using a linear bar element and a linear plane-stress ele-
ment.

Solution
Under the plane stress conditions, the virtual work densities (virtual works per unit area) of the thin
slab model

oou | ox ou / ox T
int _ ext ou fy
OWn = oov /oy t[E], ov /oy and owg = 5 ¢ where
\'
oSu 1 dy + SV | % ou/ oy +ov | ox y
1 v 0
[E]G:li2 v 1 0
Vo 0 1-v)/2

take into account the internal forces (stress) and external forces acting on the element domain. Notice
that the components f, and f, are external forces per unit area. Forces acting on the element edges
can be taken into account by separate force elements.

Element contribution for the thin slab needs to be derived from approximation and virtual work den-
sities. Approximations to the displacement components depend only on the shape function associated
with node 1 as the other nodes are fixed (displacement vanishes). In terms of the displacement com-
ponents Uyq and Uy,

u:uxj_l = a—u=0 and a—u=Ux:|_£,
L OX oy L

v:qul = @:0 and @=qu£.
L OX oy L

Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)

T

oy, gty O 0 suxa|' 1 Et [@-v)/2 0]fu
- -V
SWOt = —J Suy, ———|v 1 0 tr1 :_{&Xl} 12 2{ 0 1H“X1}
5ux1 L 1-v 0 0 (1—1/)/2 Ux1 Y S h

Virtual work expression is the integral of density over the domain occupied by the element (note that
the virtual work density is constant in this case). Therefore



T
é\le'[ §W}gtdQ:— 5Ux1 i Et (1—V)/2 0 Uyx1 .
Q Suyp] 21-v2[ 0 1]{uyg

Virtual work expression of the bar element is given in the formula collection with u,; =uy4 and
Uyp =0

é\sz_ 5Ux1 TE 1 -1 Uyx1 __ 5Ux1 TE 10 Uyx1

0 L|-1 1 0 5UY1 L{0O O Uyq .
Virtual work expression of the point force follows e.g. directly from the definition (force multiplied
by the virtual displacement in its direction)

T
swd—_Joal JFL

5UY1 0
Virtual work expression of the structure is the sum of element contributions
SW = oW+ 5w 2+ w3

T
ou 1-v)/2 0ffu 1 0]fu F
oW =—1" X (l B @) xil, EA i) o
5UY1 21—V2 0 1]|uyg L|0 O Uyq 0
1 Et EA

T |>—+— 0
ou u F
SW = X1 ( 41+v L X1, ).
Oy 0 1 Bt |{ug) (O

21—v2

Principle of virtual work SW =0 V¢da and the fundamental lemma of variation calculus give

1 Et EA

0
u F
41+v L X1, 0 o quz_ME and uy;=0. €
1 Et Uyq 0 tL+4(1+v)AE
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A Kirchhoff plate, loaded by point force F acting at the free
corner, is simply supported on two edges and free on the other
two edges as shown in the figure. Determine the parameter ag
of approximation w(x, y) =ag(x/L)(y/L) and displacement
at the center point. Use the virtual work density of the Kirch-
hoff plate model with constant E, v, p and t.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, it is enough to consider the virtual work densities of the bending mode only

.
025w/ ox? , 0%w / ox?
switt=—) swioy? b LE] 1 cPwioy? b, swgt = owd, .
% 12° ¢ z
20%5W 1 xdy 20%w 1 oxoy

in which the elasticity matrix of plane stress

1 v 0
[El,=——|v 1 0
=0 0 @1-n)/2

In the present case, distributed force vanishes i.e. f, =0 and the point force is taken into account by
a point force element.

Approximation to the transverse displacement is chosen to be (&, is not associated with any point
but it just a parameter of the approximation)

2 2 2
Xy o°w 0 ow 1
w(X,y)=ay—=— —=0, —=0,and —=—14q,.

( y) aOLL = 8X2 ayz axay LZaO

When the approximation is substituted there, virtual work density of internal forces simplifies to

T
025w/ ox? 1 v 0 0w/ ox®
int 2 2 t°E 2 2 Et3 1
oW =—< 0 5W/8y m v 1 0 0 W/@y :—5a0 6(1+V)Fa0’
2 0 0 @A-v)/2 2
20°0w/ oxoy 20°w/ oxoy

Virtual work expression of the plate bending element (element 1 here) is integral of the virtual work
density over the domain occupied by the element

Et3 1
6(L+v) L2 %-

1 L L i
W :.[0 .[0 Swiltdxdy = —Jay

Virtual work expression of the point force (element 2 here) follows from the definition of work (notice
the use of virtual displacement of the point of action x=y=1L)



SW2 =sw(L, L)F =5ayF .

Principle of virtual work and the fundamental lemma of variation calculus give

2

a-F)=0 = a0:6(1+v)—L3 .

Et3 1 F
Et

6(L+v) 12

SW = oW+ 5W? = —5a,(

Displacement at the center point

L L 1 3 FL2
w=,—)=gp-==01+v)—. €
3= =21+) =3



