Advanced microeconoics 3: game theory Spring 2023

Problem set 1 (Due 23.1.2023)

1. Consider the battle of the sexes game:

	Ballet	Football
Ballet	2, 1	0,0
Football	0, 0	1, 2

Denote by $u_i(\sigma)$ the (expected) payoff of *i* given mixed strategy profile $\sigma = (\sigma_1, \sigma_2)$.

- (a) Define Σ_i , the set of mixed strategies for each player.
- (b) Denote by $B_i(\sigma_j) \subset \Sigma_i$ the set of best-responses of player *i* to player *j*'s strategy σ_j . In other words,

$$B_{i}(\sigma_{j}) := \left\{ \sigma_{i} \in \Sigma_{i} \left| u_{i}(\sigma_{i}, \sigma_{j}) \geq u_{i}(\sigma'_{i}, \sigma_{j}) \right. \text{ for all } \sigma'_{i} \in \Sigma_{i}. \right\}$$

Derive $B_1(\sigma_2)$ for all $\sigma_2 \in \Sigma_2$. Draw a figure of the best-response correspondences of the two players (Note: with two pure strategies you can express a mixed strategy as a single number).

(c) Find all Nash equilibria of the game.

You can also sketch a similar figure as in b) for other classical 2x2 games listed in the lecture slides (e.g. prisoner's dilemma, stag hunt, hawk-dove, matching pennies)

2. Consider strategy $\sigma_1 = \frac{1}{2}T \circ \frac{1}{2}B$ for player one in the following game:

	L	R	
T	5, 2	0, 1	
C	2, 6	4, 3	
B	0, 1	5, 0	

- (a) Is there a strategy (mixed or pure) for player 2 such that σ_1 is a best-response to that strategy? Either find such a strategy or show that such a strategy does not exist.
- (b) Is there a strategy for player 1 that strictly dominates σ_1 ? Either find such a strategy or show that such a strategy does not exist.
- 3. Consider the following normal form game:

	b_1	b_2	b_3	b_4
a_1	0, 7	2, 5	7, 0	0, 1
a_2	5, 2	3, 3	5, 2	0, 1
a_3	7, 0	2, 5	0, 7	0, 1
a_4	0, 0	0, -2	0, 0	10, -1

- (a) Find for each player the set of strategies that survive iterated deletion of strictly dominated strategies.
- (b) Which strategies are rationalizable?
- (c) Find the set of Nash equilibria of the game.
- 4. (Guess the average). Consider the *n*-player game where all the players announce simultaneously a number in the set $\{1, ..., K\}$ and a price of \$1 is split equally among all the players having the guess closest to $\frac{2}{3}$ of the average of the announced numbers. Find the strategies that are rationalizable (i.e. survive iterated elimination of strictly dominated strategies) and find all Nash equilibria of the game.
- 5. Consider a simple model of R&D race. Two firms choose simultaneously how much money to invest and the winner is the firm who invests more. The winner gets a prize worth 1 million Euros. If both firms invest the same amount, then each firm wins with probability 1/2. The loser gets no prize. Formulate this situation as a strategic form game and analyze it (hint: look for a symmetric Nash equilibrium in mixed strategies i.e. a probability density function for investment level that keeps players indifferent between different amounts).