Deadline: Tue 24.1.2023 at 10am

During the exercise sessions you may work on the Warm-up problems, and the TAs will present solutions to those. Submit your solutions to Homework 1,2,3 and to the Fill-in-the-blanks problem on MyCourses before the deadline. Remember that the Homeworks and the Fill-in-the-blanks go to separate return boxes, and each return box accepts a single pdf file.

Warm-ups

Warm-up 1. Consider the group \mathbb{Z} .

- If possible, for each condition in the definition of a subgroup, give examples of subsets of \mathbb{Z} that fail that condition but satisfy the other two.
- If possible, for each condition in the definition of a subgroup, give examples of subsets of \mathbb{Z} that satisfy that condition but fail the other two.
- If possible, give examples of homomorphisms Z → Z that are: injective but not surjective / surjective but not injective / neither.

Warm-up 2. Determine which of the following are group homomorphisms:

$\mathbb{Z} \longrightarrow \mathbb{Z}$	$\mathbb{C} \longrightarrow \mathbb{R}$	$\mathbb{C}\setminus\{0\}\longrightarrow\mathbb{R}\setminus\{0\}$	$\operatorname{GL}_n(\mathbb{R}) \longrightarrow \operatorname{GL}_n(\mathbb{R})$
$n \longmapsto 2n$	$z \longmapsto z $	$z \longmapsto z $	$A \longmapsto A^{-1}$
$\mathbb{Z} \longrightarrow \mathbb{Z}$	$\mathbb{R} \longrightarrow \mathbb{R} \setminus \{0\}$	$\mathbb{Q}\setminus\{0\}\longrightarrow\mathbb{Q}\setminus\{0\}$	$\operatorname{GL}_n(\mathbb{R}) \longrightarrow \operatorname{GL}_n(\mathbb{R})$
$n \longmapsto n^2$	$x \mapsto 10^x$	$x \longmapsto 2x$	$A \longmapsto A^T$
$\mathbb{C}\setminus\{0\}\longrightarrow\mathbb{R}$	$\mathbb{C} \longrightarrow \mathbb{C}$	$\mathbb{Q}\setminus\{0\}\longrightarrow\mathbb{Q}\setminus\{0\}$	$\operatorname{GL}_n(\mathbb{R}) \longrightarrow \operatorname{GL}_n(\mathbb{R})$
$z \longmapsto z $	$z \longmapsto \overline{z}$	$x \longmapsto x^3$	$A\longmapsto (A^{-1})^T$

where \overline{z} is the conjugate of $z \in \mathbb{C}$, and A^T is the transpose of $A \in GL_n(\mathbb{R})$. (The operation is either the usual sum or product, depending on which one turns the given set into a group.)

Warm-up 3. Let (G, \cdot) be a cyclic group. Prove that *G* is isomorphic to either \mathbb{Z} or \mathbb{Z}_n , for a suitable *n*.

Hint: You may use Proposition 1.65 from the lecture notes.

Homework

Homework 1. Let *G* be a group and $H \subseteq G$ a subgroup. Prove that the following conditions are equivalent:

- 1. For all $a \in G$ and $b \in H$, we have $a^{-1}ba \in H$.
- 2. For all $x, y \in G$, if $xy \in H$, then $yx \in H$.

(Subgroups that satisfy these conditions are called *normal subgroups*.) [6 points]

Homework 2. Let *G* be a group. For all $a \in G$, consider the map

$$C_a\colon G\longrightarrow G$$
$$x\longmapsto a^{-1}xa.$$

Recall that the set Aut(G) of all automorphisms of G (i.e., isomorphisms $G \rightarrow G$) is a group with respect to composition.

- 1. Prove that, for all $a \in G$, the map C_a is an automorphism of G. [3 points]
- 2. Prove that the map

$$C\colon G \longrightarrow \operatorname{Aut}(G)$$
$$a \longmapsto C_a$$

is a group homomorphism.

Homework 3. Given a group $(G, *_G)$, we define a group structure on the Cartesian product $G \times G = \{(x, y) \mid x, y \in G\}$, by setting

$$(x, y) * (x', y') := (x *_G x', y *_G y')$$

for all $(x, y), (x', y') \in G \times G$. The group $(G \times G, *)$ is usually simply denoted G^2 or $G \times G$. Denote by 1 the identity of *G*. Define

$$H := \{(x, y) \in G \times G \mid y = 1\}$$
 and $K := \{(x, y) \in G \times G \mid x = y\}.$

- 1. Show that (1, 1) is the identity of $G \times G$, and $(x, y)^{-1} = (x^{-1}, y^{-1})$. [2 points]
- 2. Show that *H* is a subgroup of $G \times G$, and *H* is isomorphic to *G*. [2 points]
- 3. Show that *K* is a subgroup of $G \times G$, and *K* is isomorphic to *G*. [2 points]

Fill-in-the-blanks. Complete the proof of the following claim:

Claim. Let *G* be a cyclic group and let $f: G \to G$ be a group homomorphism. If *f* is injective but not surjective, then $G \cong \mathbb{Z}$.

Proof. By ______ of this problem set, we know that there are two cases:

We wish to show that the second case cannot happen. That is, we show that, for any $n \in \mathbb{Z}_{>0}$, there is no homomorphism from _______ to itself that is injective and not surjective. This is a simple set-theoretic matter: more generally, there is no function that is simultaneously injective and not surjective between _______ sets of the same cardinality. [3 points]

[3 points]