
Analysis, Random Walks and Groups

Exercise sheet 1 solutions

These model solutions are the same models used by Tuomas in Manchester, but some
exercises are omitted, attached into another exercises or separeted into separate exercises. I
(Kai) might have commented somewhere with red color if I think it is in place. Corrections
and improvements are welcome.

1. (5pts.)

In the weak Borel suffle one lifts the top card from a deck of 52 cards and inserts
it into the deck in a random position.

(a) For 0 ≤ j ≤ 51 determine the permutation σj ∈ S52 corresponding to the outcome of
placing the top card in the jth position amongst the remaining cards. (The 0th position
is on top of the remaining cards and the 51st position is on the bottom of the remaining
cards.)

(b) Supposing that one performs consecutive weak Borel shuffles with 0 ≤ j ≤ 51 chosen
uniformly at random (e.g. by rolling a 52-sided die each time) what is the probability
that the card on the top of the deck before shuffling is on top of the deck after two
shuffles?

Solution 1.a

We need to move the first card (at slot 0) to a random slot from 0, 1, . . . , 51. For
j = 0, 1, . . . , 51 with probability 1/52 and preserve the order. For this purpose, first
define a permutation

σk(j) =


k if j = 0;

j − 1 if 1 ≤ j ≤ k;

j if k < j ≤ 51;

See Figure 1 for an illustration of σk.
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Figure 1. Permutation σk moves the 0:th card to the k:th slot and adjusts
the other cards to keep the order.

To solve the question, we can then define the random permutation σ ∈ S52 by choosing
k ∈ {0, 1, . . . ,52 51} uniformly with probability 1/52 and setting σ = σk.

Solution 1.b

We are asking the probability of the event that after choosing k1 ∈ {0, 1, . . . ,52 51} with
probability 1/52 and then k2 ∈ {0, 1, . . . ,52 51} with probability 1/52, independently of
each other, we end up to a random product permutation

σk2σk1

that satisfies

σk2(σk1(0)) = 0.

Let us first look at when, if k ∈ {0, 1, . . . , 51} is given, then for which j we can have
σk(j) = 0:

(a) If k = 0, then the only possibility is j = 0, as then σ0(0) = 0.
(b) If k ≥ 1, then the only possibility is j = 1, as then σk(1) = 0.

Thus by (a) and (b) in order for the event

σk2(σk1(0)) = 0

to occur,

(1) either k2 = 0 and σk1(0) = 0, that is, k1 = 0;
(2) or k2 ≥ 1 and σk1(0) = 1, that is, k1 = 1.

Hence the event

σk2(σk1(0)) = 0

occurs if and only if either k1 = k2 = 0 or [k1 = 1 and k2 ≥ 1].
Since we choose k1 and k2 with probabilities 1/52, independently of each other, this

means that the event k1 = k2 = 0 happens with probability

1

522
,
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and the event [k1 = 1 and k2 ≥ 1] happens with probability

1

52
· 51

52
=

51

522
.

Therefore, the answer to the question is

1

522
+

51

522
=

52

522
=

1

52
.

2. (5pts)

Prove the variational formula for the total variation distance between two probability
distributions µ, ν in Zp:

d(µ, ν) =
1

2
max{|µ(f)− ν(f)| : ‖f‖∞ ≤ 1, f : Zp → R}.

Hint: For the more difficult upper bound, first define a suitable function g : Zp → R using
the set B = {t ∈ Zp : µ(t) ≥ ν(t)} such that you can ensure µ(g)−ν(g) =

∑
t∈Zp
|µ(t)−ν(t)|

(try to think something quite simple for g), and then use the L1 identity from the lecture notes.

Solution 2.

Let us first prove

d(µ, ν) ≤ 1

2
max{|µ(f)− ν(f)| : ‖f‖∞ ≤ 1, f : Zp → R}.

To do this, we will construct a function g such that 1
2 |µ(g)− ν(g)| realises the d(µ, ν). Write

B = {t ∈ Zp : µ(t) ≥ ν(t)}.

Define a function

g(t) =

{
+1, t ∈ B
−1, t /∈ B.

Then we have

µ(g)− ν(g) =
∑
t∈Zp

g(t)µ(t)−
∑
t∈Zp

g(t)ν(t)

=
∑
t∈Zp

g(t)(µ(t)− ν(t))

=
∑
t∈B

g(t)(µ(t)− ν(t)) +
∑
t/∈B

g(t)(µ(t)− ν(t))

Here if t ∈ B we have by the definition of B that

g(t)(µ(t)− ν(t)) = µ(t)− ν(t) ≥ 0

and if t /∈ B we have by the definition of B that

g(t)(µ(t)− ν(t)) = −(µ(t)− ν(t)) ≥ 0.

Hence∑
t∈B

g(t)(µ(t)−ν(t))+
∑
t/∈B

g(t)(µ(t)−ν(t)) =
∑
t∈B
|µ(t)−ν(t)|+

∑
t/∈B

|µ(t)−ν(t)| =
∑
t∈Zp

|µ(t)−ν(t)|.
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This in particular proves that

µ(g)− ν(g) =
∑
t∈Zp

|µ(t)− ν(t)|,

making µ(g)− ν(g) ≥ 0. Thus by the L1 formula for the total variation distance we obtain

d(µ, ν) =
1

2

∑
t∈Zp

|µ(t)− ν(t)| = 1

2
|µ(g)− ν(g)|.

Since
‖g‖∞ = max{|g(t) : t ∈ Zp} = 1,

we have proved

d(µ, ν) ≤ 1

2
max{|µ(f)− ν(f)| : ‖f‖∞ ≤ 1, f : Zp → R}.

We still need to prove the reverse direction:

d(µ, ν) ≥ 1

2
max{|µ(f)− ν(f)| : ‖f‖∞ ≤ 1, f : Zp → R}.

To do this, fix any f : Zp → R with ‖f‖∞ ≤ 1. Then f(t) ≤ 1 for all t ∈ Zp. Thus we have
by the triangle inequality

|µ(f)− ν(f)| =
∣∣∣ ∑
t∈Zp

f(t)µ(t)−
∑
t∈Zp

f(t)ν(t)
∣∣∣

=
∣∣∣ ∑
t∈Zp

f(t)(µ(t)− ν(t))
∣∣∣

≤
∑
t∈Zp

|f(t)||µ(t)− ν(t)|

≤
∑
t∈Zp

1 · |µ(t)− ν(t)|

= 2d(µ, ν),

where in the last line we used the L1 identity for the total variation distance. Hence the
claim follows as f : Zp → R is arbitrary.

Let 0 < α < 1, integer p ≥ 2 and define the following probability distribution on Zp:
µα = αδ1 + (1− α)δ−1.

3.

Find the probabilities of the events:

(a) “a randomly chosen t ∈ Zp with respect to µα is even”

(b) “a randomly chosen t ∈ Zp with respect to µα is prime”

Solution 3.a

For the first event, define the set

A = {t ∈ Zp : t is even}.
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Then we are asking the measure µα(A). The answer will depend on whether p is even or
odd.

Note that −1 = p− 1. Thus:

- If p is odd, then p− 1 is even, that is, δp−1(A) = 1, so

µα(A) = α · 0 + (1− α) · 1 = 1− α.
Hence if p is odd, then the answer is a randomly chosen t ∈ Zp with respect to µα is a even
with probability 1− α.

- If p is even, then p− 1 is odd, that is, δp−1(A) = 0, so

µα(A) = α · 0 + (1− α) · 0 = 0.

Hence if p is even, then the answer is a randomly chosen t ∈ Zp with respect to µα is a even
with probability 0.

Solution 3.b

¸ Now for the second event, define the set

B = {t ∈ Zp : t is prime}.
We need to find the measure µα(B).

Note that primes are always strictly greater than 1, so 1 /∈ B.

- If p− 1 is a prime, then δp−1(B) = 1 so

µα(B) = α · 0 + (1− α) · 1 = 1− α.
Hence if p− 1 is a prime, then the answer is a randomly chosen t ∈ Zp with respect to µα is
a prime with probability 1− α.

- If p− 1 is not a prime, then δp−1(B) = 1 so

µα(B) = α · 0 + (1− α) · 0 = 0.

Hence if p− 1 is not a prime, then the answer is a randomly chosen t ∈ Zp with respect to
µα is a prime with probability 0.

4.

Define a function f : Zp → C by

f(t) =

{
+1; t is even;

−1; t is odd.

Find the integral (i.e. expectation) µα(f) of f .

Solution 4.

¸Firstly we know that −1 = p − 1. Thus the value of µα(p − 1) depends whether p is
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even or odd.

Case 1: p is odd. Then p− 1 is even so

µα(f) =
∑
t∈Zp

f(t)µα(t) = −1 · α+ 1 · (1− α) = 2− α 1− 2α.

Case 2: p is even. Then p− 1 is odd so

µα(f) =
∑
t∈Zp

f(t)µα(t) = −1 · α+ (−1) · (1− α) = −1.

The number µα(f) tells us the average sign of a random number t ∈ Zp (where sign is +1
if even and −1 if odd).

5.

Define a function f : Zp → C by

f(t) =

{
+1; t is even;

−1; t is odd.

Find the integral (i.e. expectation) λ(f) of f with respect to the uniform measure.

Solution 5.

If p is even, we did this already in the lectures, so there are p/2 even and p/2 odd numbers
in {0, 1, . . . , p− 1}. Thus

λ(f) =
∑
t∈Zp

f(t)λ(t) =
p

2
· 1

p
− p

2
· 1

p
= 0.

If p is odd, then p− 1 is even (and we define 0 to be even), so there are in total (p− 1)/2
odd numbers and (p− 1)/2 + 1 even numbers. Hence

λ(f) =
∑
t∈Zp

f(t)λ(t) =
(p− 1

2
+ 1
)
· 1

p
− p− 1

2
· 1

p
=

1

p
.

6.

The distance between two points t, s ∈ Zp is

dist(t, s) = min{t⊕ (−s), (−t)⊕ s},
which measures the shortest distance between t and s at the dinner table. A function
f : Zp → R is Lipschitz if there exists L ≥ 0 (it exists for any f , see below), is denoted as
Lip(f). The earth mover’s distance or also known as the first Wasserstein distance
W1(µ, ν) of two probability distributions µ, ν in Zp is given by

W1(µ, ν) = max
{
|µ(f)− ν(f)| : Lip(f) ≤ 1, f : Zp → R

}
.

Wasserstein distance appears commonly in a field called mass transportation theory,
which has many applications throughout economics, physics and mathematics of PDEs. We
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can state it in our course’s language as follows. Given a probability distribution µ on Zp
and a map T : Zp → Zp, define the push-forward T∗µ by the formula

T∗µ(t) = µ(T−1{t}), t ∈ Zp,

where T−1{t} = {s ∈ Zp : T (t) = s} is the pre-image of the singleton {t}. Given two
probability distributions µ, ν in Zp, a mapping T : Zp → Zp that maps µ onto ν, T∗µ = ν,
is called an optimal transportation if it minimises the “cost”:∫

dist(t, T (t)) dµ(t).
(

=
∑
t∈Zp

dist(t, T (t))µ(t)
)

The Monge-Kantorovich duality theorem says the minimal cost is the first Wasserstein
distance:

min
{∫

dist(t, T (t)) dµ(t) : T∗µ = ν
}

= W1(µ, ν),

the proof can be found from literature on optimal transportation theory.

(a) Prove that any f : Zp → R is Lipschitz. Which functions f : Zp → R satisfy Lip(f) = 0?
(b) Prove that

d(µ, ν) ≤W1(µ, ν),

where d(µ ,̧ ν) is the total variation distance.
(c) Fix s ∈ Zp. Define a transportation map T : Zp → Zp by T (t) = s, t ∈ Zp. Verify that

the uniform distribution λ(t) = 1
p , t ∈ Zp, satisfies T∗λ = δs, where δs is the singular

distribution at s. What is the cost of transporting the uniform mass λ to a point δs?
That is, find the cost ∫

Zp

dist(t, T (t))dλ(t).

Can you transport δs to λ?

Solution 6.a

The number

0 ≤ L := max
a6=b

|f(a)− f(b)|
d(a, b)

<∞

as Zp is finite since d(a, b) ≥ 1 when a 6= b and the maximum is over a finite set Zp. Then

|f(t)− f(s)| = |f(t)− f(s)|
d(t, s)

· d(t, s) ≤ Ld(t, s).

Moreover, if t = s, then as d(t, s) ≥ 0 we have |f(t)− f(s)| = 0 ≤ Ld(t, s), so f is Lipschitz.

After a moment, we notice that the constant functions cause L = 0.

Solution 6.b

Take f : Zp → R such that ‖f‖∞ ≤ 1. To prove the claim, it will be enough if we
construct a Lipschitz function g : Zp → R with Lip(g) ≤ 1 such that

|µ(f)− ν(f)| ≤ 2|µ(g)− ν(g)|.

For this purpose, let us first define a number

L := max
t6=s

|f(t)− f(s)|
d(t, s)

.
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Since for t 6= s the distance 1 ≤ d(t, s) and |f(t)− f(s)| ≤ 2‖f‖∞ ≤ 2 we have

0 ≤ L ≤ 2.

Define a function g : Zp → R by

g(t) = f(t)/L, t ∈ Zp.

Then for t 6= s we have by the definition of L that

|g(t)− g(s)| = 1

L
|f(t)− f(s)| = 1

L
· |f(t)− f(s)|

d(t, s)
· d(t, s) ≤ d(t, s).

Moreover, for t = s we have

|g(t)− g(s)| = 0 ≤ d(t, s).

Thus g is Lipschitz with Lip(g) ≤ 1. Lastly, since

µ(g) =
∑
t∈Zp

g(t)µ(t) =
∑
t∈Zp

f(t)

L
µ(t) = L−1µ(f),

and similarly for ν(g), we see that

|µ(f)− ν(f)| = L|L−1µ(f)− L−1ν(f)| = L|µ(g)− ν(g)| ≤ 2|µ(g)− ν(g)|,

which gives the claim.

Notice that in the previous proof, L can be zero. Hence when defining g, where can
be a division by zero. This is the case when the function is constant. This should be handled
separately, but this should not be too hard, just choose g = f .´

Solution 6.c

Fix t ∈ Zp. We have

λ(T−1{t}) = λ(∅) = 0;

if t 6= s and

λ(T−1{t}) = λ(Zp) = 1

if t = s. Therefore, λ(T−1{t}) = δs(t), for all t ∈ Zp, as we claimed.

By the definition of the integral∫
dist(t, T (t)) dλ(t) =

∑
t∈Zp

dist(t, T (t))λ(t) =
∑
t∈Zp

dist(t, s)
1

p
=

1

p

∑
t∈Zp

dist(t, s)= *

If p is even, then we see that

∑
t∈Zp

dist(t, s) =

p/2∑
k=1

1 +

p/2∑
k=1

1 =
p(p+ 1)

2

by taking the both directions from s to either clockwise or counterclockwise. Hence the cost
is ∫

dist(t, T (t)) dλ(t) =
1

p

p(p+ 1)

2
=
p+ 1

2
.

If p is odd, then we have one less distance in the sums, so we have

∑
t∈Zp

dist(t, s) =

(p−1)/2∑
k=1

1 +

(p−1)/2∑
k=1

1 =
(p− 1)p

2
.
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Hence the cost of transporting λ to δs is∫
dist(t, T (t)) dλ(t) =

1

p

(p− 1)p

2
=
p− 1

2
.

I think the previous is wrong. For example, take p = 2. Then the cost should be

1

2
6= 2 + 1

2

. Similarly, if p = 3, the cost should be

2

3
6= 3− 1

2
= 1

. I have something like

IF p is even:

*=
1

p

[ p
2∑

k=1

k +

p
2
−1∑
k=1

k
]

=
1

p

[p
2

p
2 + 1

2
+ (

p

2
− 1)

p
2 − 1 + 1

2

]
=

1

p

[p(p2 + 1)

4
+
p

2

p− 2

4

]
=

p
2 + 1

4
+
p− 2

8

=
p+ 2 + p− 2

8

=
2p

8

=
p

4

IF p is odd:

*=
1

p

[
2

p−1
2∑

k=1

k
]

=
2

p
(
p− 1

2
)(
p−1
2 + 1

2
)

=
p− 1

p

p+ 1

4

=
p2 − 1

4p

It is not possible to transport δs to λ since otherwise, if such map S : Zp → Zp exists with

λ = S∗δs.

Define t := S(s) ∈ Zp. Then s ∈ S−1{t} so we have

δs(S
−1(t)) = 1.

On the other hand, we assumed λ = S∗δs so

1/p = λ(s) = δs(S
−1(t)) = 1
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which is not possible when p ≥ 2.


