Homework 1 - Model solution

a) FC power density is $u_{\mathrm{vol}, \mathrm{FC}}=1 \mathrm{~kW} / \mathrm{L}$ or $\mathrm{u}_{\text {grav }, \mathrm{FC}}=500 \mathrm{~W} / \mathrm{kg}$, fuel tank energy density $u_{\mathrm{vol}, \mathrm{tank}}=4$ MJ / L or $\mathrm{u}_{\text {grav,tank }}=8 \mathrm{MJ} / \mathrm{kg}$. The vehicle needs to be able to run for $\mathrm{t}=300 \mathrm{miles} / 60 \mathrm{mph}=5 \mathrm{~h}=18000$ s . The power requirements for the vehicle are $\mathrm{P}=30 \mathrm{~kW}$ and it's conversion efficiency is $\eta=0.4$.

The mass and volume requirements for the tank and fuel cell can be calculated separately.
The required FC volume can be calculated from equation

$$
\begin{equation*}
\mathrm{V}_{\mathrm{FC}}=\frac{\mathrm{P}}{\mathrm{u}_{\mathrm{vol}, \mathrm{FC}}}=\frac{30 \cdot 10^{3} \mathrm{~W}}{1 \cdot 10^{3} \mathrm{~W} / \mathrm{L}}=30 \mathrm{~L} \tag{1}
\end{equation*}
$$

and the mass from equation

$$
\begin{equation*}
\mathrm{m}_{\mathrm{FC}}=\frac{\mathrm{P}}{\mathrm{u}_{\mathrm{grav}, \mathrm{FC}}}=\frac{30 \cdot 10^{3} \mathrm{~W}}{500 \mathrm{~W} / \mathrm{kg}}=60 \mathrm{~kg} . \tag{2}
\end{equation*}
$$

For the fuel tank the equivalent equation for volume is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{tank}}=\frac{\mathrm{P}^{*} \mathrm{t}}{\eta \cdot \mathrm{u}_{\mathrm{vol}, \mathrm{tank}}}=\frac{30 \cdot 10^{3} \mathrm{~W} \cdot 18000 \mathrm{~s}}{0.4 \cdot 4 \cdot 10^{6} \mathrm{~J} / \mathrm{L}}=337.5 \mathrm{~L} \tag{3}
\end{equation*}
$$

and for the mass

$$
\begin{equation*}
\mathrm{m}_{\mathrm{tank}}=\frac{\mathrm{P}^{*} \mathrm{t}}{\eta \cdot \mathrm{u}_{\mathrm{grav}, \operatorname{tank}}}=\frac{30 \cdot 10^{3} \mathrm{~W} \cdot 18000 \mathrm{~s}}{0.4 \cdot 8 \cdot 10^{6} \mathrm{~J} / \mathrm{kg}}=168.75 \mathrm{~kg} \tag{4}
\end{equation*}
$$

Therefore, the combined volume for the fuel cell is $\mathrm{V} \approx 370$ liters and the mass $\mathrm{m} \approx 230$ kilograms.
b) The volume of the cylindrical metal hydride container is

$$
\begin{equation*}
\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}=\pi \cdot(4.5 \mathrm{~cm})^{2} \cdot 42.5 \mathrm{~cm} \approx 2700 \mathrm{~cm}^{3}=2.7 \mathrm{~L} \tag{5}
\end{equation*}
$$

1 mole of gas in standard conditions takes up a volume of 22.4 liters. The container has a capacity for 900 standard liters of hydrogen, which corresponds to $\frac{900 \mathrm{~L}}{22.4 \mathrm{~L} / \mathrm{mol}} \approx 40.2 \mathrm{~mol}$, which is the amount of hydrogen in the container.
Using the relation $1 \mathrm{kWh}=3600 \mathrm{~kJ}$, the lower heating value of hydrogen is $244 \mathrm{~kJ} / \mathrm{mol}=0.06778 \mathrm{kWh} / \mathrm{mol}$. Therefore, the total energy of the hydrogen contained in the metal hydride per liter (volumetric energy density) is $\frac{0.06778 \mathrm{kWh} / \mathrm{mol} \cdot 40.2 \mathrm{~mol}}{2.7 \mathrm{~L}} \approx 1.0 \mathrm{kWh} / \mathrm{L}$. The answer is thus d) $1.0 \mathrm{kWh} / \mathrm{L}$.

