Homework 3, solution

Problem

A PEM fuel cell operates at 60 °C and ambient pressure. Exchange current density on cathode side, $j_{0,c}$, is 0.005 mAcm⁻². Assume charge transfer coefficient on cathode side, α_c , to be 0.5 and that there is an excess amount of gases available (no concentration limitation).

- a) Calculate the activation voltage losses at 0.01 Acm⁻², 0.1 Acm⁻² and 1 Acm⁻².
- b) If the resistive losses at 1 Acm⁻² are one third of the activation losses, calculate the area specific cell resistance, R.
- c) Assume there are no other losses besides the activation and ohmic losses and that E_{theor} is 1.2 V. Calculate cell voltage at 0.01 Acm⁻², 0.1 Acm⁻² and 1 Acm⁻².

Hints:

O'Hayre (2016) sections:

- a) Section 3.7
- b) Sections 4.2 and 4.3
- c) Section 1.7

Anode side reaction is much faster than cathode side reaction in PEMFC. This means that anode activation losses are often neglected.

Solution

a) Activation losses at the cathode can be calculated using the Buttler-Volmer equation, which in the absence of concentration limitations of reactants and products, can be written as

$$j = j_{0,c} \left(\exp\left(\frac{\alpha_c n F \eta_{act,c}}{RT}\right) - \exp\left(\frac{-(1 - \alpha_c) n F \eta_{act,c}}{RT}\right) \right)$$
(1)

The activation voltage loss, $\eta_{act,c}$, can be solved in different ways, depending on the value of α_c and whether or not an approximate solution is accurate enough. In general, if $\alpha_c \neq \frac{1}{2}$ eq. (1) cannot be solved analytically, but a numerical solution is needed. This can be done for example in Excel, using its Solver tool, by finding value of $\eta_{act,c}$ that sets the difference between the left and right hand side of eq. (1) zero, given all the other variables are known

$$j_{0,c}\left(\exp\left(\frac{\alpha_c nF\eta_{\text{act,c}}}{RT}\right) - \exp\left(\frac{-(1-\alpha_c)nF\eta_{\text{act,c}}}{RT}\right)\right) - j = 0 \qquad (\text{solve numerically}) \tag{2}$$

On the other hand, if $\alpha_c = \frac{1}{2}$, as is the case in this problem, eq. (1) becomes

$$j = j_{0,c} \left(\exp\left(\frac{nF\eta_{\text{act,c}}}{2RT}\right) - \exp\left(\frac{-nF\eta_{\text{act,c}}}{2RT}\right) \right)$$
(3)

$$j = j_{0,c} \left(\exp(x) - \exp(-x) \right) \qquad ; x = \frac{nF\eta_{\text{act,c}}}{2RT}$$
(4)

$$j = j_{0,c} \cdot 2 \cdot \sinh(x) \tag{5}$$

This we can solve for x and then $\eta_{act,c}$ analytically using the inverse hyperbolic sine function asinh(x)

$$x = \operatorname{asinh}\left(\frac{j}{2j_{0,c}}\right) \tag{6}$$

$$\eta_{\text{act,c}} = \frac{2RT}{nF} \operatorname{asinh}\left(\frac{j}{2j_{0,c}}\right) \tag{7}$$

Here n = 2, so our final result is

$$\eta_{\text{act,c}} = \frac{RT}{F} \operatorname{asinh}\left(\frac{j}{2j_{0,c}}\right) \tag{8}$$

For j = 0.01 A/cm² we get

$$\eta_{\text{act,c}} = \frac{\frac{8.314 \, \frac{\text{J}}{\text{mol K}} \cdot 338.15 \, \text{K}}{96485 \, \frac{\text{C}}{\text{mol}}} \operatorname{asinh}\left(\frac{0.01 \, \frac{\text{A}}{\text{cm}^2}}{2 \cdot 0.005 \frac{\text{mA}}{\text{cm}^2}}\right)$$
(8)

 $\eta_{\text{act,c}} \approx 29.14 \text{ mV} \cdot \text{asinh}(10^3) \approx 29.14 \text{ mV} \cdot 7.60 \approx 221 \text{ mV}$

Repeating the calculation for the other current densities and collecting the results:

$$j = 0.01 \frac{A}{cm^2} \rightarrow \eta_{act,c} \approx 0.221 V$$

$$j = 0.1 \frac{A}{cm^2} \rightarrow \eta_{act,c} \approx 0.289 V$$

$$j = 1 \frac{A}{cm^2} \rightarrow \eta_{act,c} \approx 0.356 V$$
(9)

On the other hand, because the current densities we are interested in are more than three orders of magnitude higher than the exchange current density, and therefore give high overpotentials, the B-V equation (1) could be approximate by leaving the smaller (2^{nd}) exponential term out, to allow easy analytical solution

$$j \approx j_{0,c} \exp\left(\frac{\alpha_c n F \eta_{\text{act},c}}{RT}\right)$$
(10)

$$\eta_{\text{act,c}} \approx \frac{RT}{\alpha_c nF} \ln\left(\frac{j}{j_{0,c}}\right) = \frac{RT}{F} \ln\left(\frac{j}{j_{0,c}}\right)$$
(11)

For j = 0.01 A/cm² we get

$$\eta_{\text{act,c}} \approx \frac{8.314 \frac{\text{J}}{\text{mol K}} \cdot 338.15 \text{ K}}{96485 \frac{\text{C}}{\text{mol}}} \ln \left(\frac{0.01 \frac{\text{A}}{\text{cm}^2}}{0.005 \frac{\text{mA}}{\text{cm}^2}} \right)$$

$$\eta_{\text{act,c}} \approx 29.14 \text{ mV} \cdot \ln(2 \cdot 10^3) \approx 29.14 \text{ mV} \cdot 7.60 \approx 221 \text{ mV}$$

The result is the same as obtained with the exact solution (8). The error is less than 10^{-8}) and even less for the higher current densities. So, both equation (8) and (11) are equally right for this purpose.

b) Ohmic losses at $j = 1 \frac{A}{cm^2}$ were one third of the activation losses. Therefore

$$\frac{\eta_{\text{act}}}{3} = \eta_{\text{Ohmic}} = R_{\text{A}}j \rightarrow R_{\text{A}} = \frac{\eta_{act}}{3j} = \frac{0.356 \text{ V}}{3 \cdot 1\frac{\text{A}}{\text{cm}^2}} \approx 0.12 \,\Omega\text{cm}^2$$

c) At the used current densities we get

$$j = 0.01 \frac{A}{cm^2} \rightarrow \eta_{Ohmic} \approx 0.0012 V$$
$$j = 0.1 \frac{A}{cm^2} \rightarrow \eta_{Ohmic} \approx 0.012 V$$
$$j = 1 \frac{A}{cm^2} \rightarrow \eta_{Ohmic} \approx 0.12 V$$

If there are no other losses, cell voltage is given by

$$E = E_{\text{theor}} - \eta_{\text{act}} - \eta_{\text{Ohmic}}$$

Using the previous results and Etheor = 1.2 V we get

$$j = 0.01 \frac{A}{cm^2} \rightarrow E \approx 0.98 V$$
$$j = 0.1 \frac{A}{cm^2} \rightarrow E \approx 0.90 V$$
$$j = 1 \frac{A}{cm^2} \rightarrow E \approx 0.73 V$$

As can be seen, activation losses are much larger than ohmic losses at low current densities.