Homework 4-Solutions

a) The activation energy can be calculated from equation (eq. 4.64 in O'Hayre)

$$
\begin{equation*}
\sigma \mathrm{T}=\mathrm{A}_{\mathrm{SOFC}} \cdot \mathrm{e}^{-\Delta \mathrm{G}_{\mathrm{act}} / \mathrm{RT}} \tag{1}
\end{equation*}
$$

where $\sigma=\frac{\mathrm{L}}{\mathrm{ASR}}$ is the material conductivity, T is temperature, $\mathrm{A}_{\mathrm{SOFC}}$ is a constant including different exponential factors, $-\Delta \mathrm{G}_{\text {act }}$ is the activation energy and R is the molar gas constant. The constant $\mathrm{A}_{\mathrm{SOFC}}$ is the same independent of the cell temperature and therefore we can solve for it in the equation and put two expressions for $\mathrm{A}_{\text {SOFC }}$ in different temperatures equal to each other:

$$
\begin{gather*}
\mathrm{A}_{\mathrm{SOFC}}=\frac{\sigma \mathrm{T}}{\mathrm{e}^{-\Delta \mathrm{G}_{\text {act }} / \mathrm{RT}}} \tag{2}\\
\mathrm{~A}_{\mathrm{SOFC}, \mathrm{~T} 1}=\mathrm{A}_{\mathrm{SOFC}, \mathrm{~T} 2} \tag{3}\\
\frac{\sigma_{1} \mathrm{~T}_{1}}{\mathrm{e}^{-\Delta \mathrm{G}_{\text {act }} / \mathrm{RT}_{1}}}=\frac{\sigma_{2} \mathrm{~T}_{2}}{\mathrm{e}^{-\Delta \mathrm{G}_{\text {act }} / \mathrm{RT}_{2}}} \tag{4}\\
\frac{\mathrm{e}^{-\Delta \mathrm{G}_{\text {act }} / \mathrm{RT}_{1}}}{\mathrm{e}^{-\Delta \mathrm{G}_{\text {act }} / \mathrm{RT}_{2}}}=\frac{\sigma_{1} \mathrm{~T}_{1}}{\sigma_{2} \mathrm{~T}_{2}} \tag{5}\\
\mathrm{e}^{\frac{-\Delta \mathrm{G}_{\text {act }}}{\mathrm{RT}_{1}} \frac{+\Delta \mathrm{G}_{\text {act }}}{\mathrm{RT}_{2}}}=\frac{\sigma_{1} \mathrm{~T}_{1}}{\sigma_{2} \mathrm{~T}_{2}} \tag{6}\\
\frac{-\Delta \mathrm{G}_{\mathrm{act}} \mathrm{~T}_{2}+\Delta \mathrm{G}_{\text {act }} \mathrm{T}_{1}}{\mathrm{RT}_{1} \mathrm{~T}_{2}}=\ln \left(\frac{\sigma_{1} \mathrm{~T}_{1}}{\sigma_{2} \mathrm{~T}_{2}}\right) \tag{7}\\
\Delta \mathrm{G}_{\text {act }}=\frac{\mathrm{RT}_{1} \mathrm{~T}_{2} \ln \left(\frac{\sigma_{1} \mathrm{~T}_{1}}{\sigma_{2} \mathrm{~T}_{2}}\right)}{\mathrm{T}_{1}-\mathrm{T}_{2}}=\frac{\mathrm{RT}_{1} \mathrm{~T}_{2} \ln \left(\frac{\mathrm{~T}_{1} \mathrm{ASR}_{2}}{\mathrm{~T}_{2} \mathrm{ASR}_{1}}\right)}{\mathrm{T}_{1}-\mathrm{T}_{2}} \tag{8}\\
-\Delta \mathrm{G}_{\text {act }}=\frac{8.314 \mathrm{~m}^{2} \mathrm{kgs}^{-2} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \cdot 1000 \mathrm{~K} \cdot 1200 \mathrm{~K} \cdot \ln \left(\frac{1000 \mathrm{~K} \cdot 0.05 \Omega \mathrm{~cm}^{2}}{1200 \mathrm{~K} \cdot 0.2 \Omega \mathrm{~cm}{ }^{2}}\right)}{1000 \mathrm{~K}-1200 \mathrm{~K}} \approx 78249 \mathrm{~J} / \mathrm{mol}=78 \mathrm{~kJ} / \mathrm{mol} . \tag{9}
\end{gather*}
$$

Activation energy for conduction in this electrolyte material is therefore $78 \mathrm{~kJ} / \mathrm{mol}$.
b) The limiting current density can be calculated from equation (eq. 5.10 in O'Hayre)

$$
\begin{equation*}
\mathrm{j}_{\mathrm{L}}=\mathrm{nFD}^{e f f} \frac{\mathrm{C}_{\mathrm{R}}^{0}}{\delta} \tag{10}
\end{equation*}
$$

where n is the number of electrons participating in the reaction (in our case we use value $\mathrm{n}=4$ because the oxygen reaction is the rate determining reaction because of its slowness), F is the Faraday constant, $\mathrm{D}^{\mathrm{eff}}$ is the effective reactant diffusivity, $\mathrm{C}_{\mathrm{R}}^{0}$ is the bulk reactant concentration and δ is the diffusion layer thickness. The effective reactant diffusivity can be calculated with the help of porosity (eq. 5.3 in O'Hayre)

$$
\begin{equation*}
\mathrm{D}_{\mathrm{O} 2, \mathrm{~N} 2}^{\mathrm{eff}}=\epsilon^{1.5} \mathrm{D}_{\mathrm{O} 2, \mathrm{~N} 2}=0.4^{1.5}\left(0.2 \mathrm{~cm}^{2} / \mathrm{s}\right)=0.0506 \mathrm{~cm}^{2} / \mathrm{s} \tag{11}
\end{equation*}
$$

(Oxygen-nitrogen binary diffusion constant was gained from O'Hayre, page 182) and the bulk reactant concentration with the help of the ideal gas law from

$$
\begin{equation*}
\mathrm{C}_{\mathrm{R}}^{0}=\frac{\mathrm{n}_{\mathrm{R}}^{0}}{\mathrm{~V}}=\frac{\mathrm{P}_{\mathrm{R}}^{0}}{\mathrm{RT}}=\frac{0.21 \cdot(101300 \mathrm{~Pa} / \mathrm{atm})}{8.314 \mathrm{~J} / \mathrm{molK} \cdot 293 \mathrm{~K}} \approx 8.733 \mathrm{~mol} / \mathrm{m}^{3}=8.73 \cdot 10^{-6} \mathrm{~mol} / \mathrm{cm}^{3} \tag{12}
\end{equation*}
$$

Inserting the values we get a limiting current density of

$$
\begin{equation*}
\mathrm{j}_{\mathrm{L}}=4 \cdot 96485 \mathrm{C} / \mathrm{mol} \cdot 0.0506 \mathrm{~cm}^{2} / \mathrm{s} \cdot 8.73 \cdot 10^{-6} \frac{\mathrm{~mol} / \mathrm{cm}^{3}}{0.05 \mathrm{~cm}} \approx 3.4 \mathrm{~A} / \mathrm{cm}^{2} \tag{13}
\end{equation*}
$$

