# ECON-C4100 - Econometrics I

Statistical tests, Exercise session 2

Antto Jokelainen, Ellen Sahlström

1/6

## Hypothesis testing

- A hypothesis is a yes/no-question formulated based on a scientific problem.
- We differentiate between one-sided hypothesis testing (Is the mean for group a smaller than the mean for group b?) and two-sided hypotheses (Is the difference in means different from zero?).
- A null hypothesis must be formulated, together with an alternative hypothesis. These two cover all possible scenarios.

2/6

### Hypothesis testing

- One-sided:  $H_1 : \mu_1 \mu_2 < d_0$
- Two-sided:  $H_0: \mu_1 \mu_2 = d_0$ , vs.  $H_1: \mu_1 \mu_2 \neq d_0$
- The hypothesis can be tested using a t-test.

#### T-statistic

$$t = \frac{(\bar{Y}_1 - \bar{Y}_2) - d_0}{SE(\bar{Y}_1 - \bar{Y}_2)} \tag{1}$$

where

$$SE(\overline{Y}_1 - \overline{Y}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$
 (2)

This will give us the value of the t-statistic. One can remember, that a t-statistic larger than 1.96 (absolute value) allows us to reject the null hypothesis at a 5% significance level.

- Using the t-statistic we can calculate a p-value.
- The p-value is (simply put) the probability to observe the given result when the null hypothesis is true.
- A small p-value allows us to reject the null hypothesis.
- The "level of significance" refers to the p-value
- With a large n, the p-value is calculated as  $p=2\phi(-|t^{act}|)$ .

#### Degrees of freedom

- When calculating certain statistics, the size of the sample is used and denoted *n*.
- However, as the calculation consists of several parts, the calculations "eat" some of the sample size.
- Therefore, we talk about degrees of freedom, as n-x, where x is the correction for degrees of freedom, the number of calculations done before that step.
- Some probability distributions are defined using degrees of freedom, such as Student's t, F and  $\chi^2$ -distribution.

6/6