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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems related to vibration FEA:

  Vibration problem, natural frequencies and modes of vibration, solution to vibration

problem as the function of time.

   Time dependent linear elasticity problem, principle of virtual work in a time-dependent

case and vibration analysis by FEM.

 Inertia term element contributions for the solid-, beam-, plate-, and rigid body elements.
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VIBRATION EXPERIMENT
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TWO SMALLEST EIGENFREQUENCIES

Experiment 11.4 1/s 29.6 1/s

FEA 11.3 1/s 29.6 1/s



3-5

BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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3.1 LINEAR NON-STATIONARY ELASTICITY

Assuming equilibrium of a solid body (a set of particles) inside domain  , the aim is to find

displacement u  of the particles as functions of time, when external forces or boundary

conditions are changed in some manner:

Equilibrium equations f u   
    in  , 0t 

Hooke’s law )
1 1 2

(E I u
 

    
 

     in  , 0t 

Boundary conditions n t 
    or u g

 
  on , 0t 

Initial conditions 0u u
    and 0u u     in   at 0t 

The balance law of angular momentum is satisfied ‘a priori’ by the form of Hooke’s law.
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext ine 0W W W W       u   is just one form of the

equations of motion, where

Internal forces: int int
VW w dV 


 

External forces: ext ext ext
V AW w dV w dA  

 
  

Inertia forces: ine ine
VW w dV 


  .

In connection with the principle, time is considered as a parameter and inertia term is treated

as a part of the volume force although it is not a force (it does not have a counterpart which

is opposite in direction and equal in magnitude).
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, inertia forces, external volume forces, and

external surface forces are

TT

int
xy xyxx xx

V yy yy yz yz

zz zz zx zx

w

  
    

   

      
      

         
       
       

,

T

ext
x x

V y y

z z

u f
w u f

u f


 



   
   

    
   
   

,

T

ext
x x

A y y

z z

u t
w u t

u t


 



   
   

    
   
   

,  and

T

ine
x x

V y y

z z

u u
w u u

u u


  



   
   

    
   
   






.

Virtual work densities consist of terms containing kinematic quantities and their “work

conjugates” !

Partial derivatives
with respect to time
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3.2 PERIODIC MOTION AND VIBRATION

Constrained motion: there exists c and C such that ( )c x t C 

Periodic motion: there exists T  such that ( ) ( )x t T x t  for any t

Vibration: "periodic motion near static equilibrium"

Harmonic vibration: ( ) sinx t X t

Period T

Frequency 1/f T

Angular speed 2 f 

Amplitude / 2X H

x

H

T

t
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 FREE UNDAMPED VIBRATION

Initial value problem 0 Ma Ka 0t   , 0a a  0t  ,  and 0a a 0t 

Solution 1
0 0( ) cos( ) sin( )t t t  a Ω a Ω Ω a

Problem parameter 1 1/2 1( )  Ω M K XωX

In practice, the main task is to find the eigenvalue decomposition 1Ω XωX  or it’s form
2 2 1Ω Xω X   (see: the definition of matrix function)!
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EXAMPLE 3.1 Determine the angular speeds and modes of free vibrations, when the

differential equations in their standard form are given by

1 12

2 2

a a
0

a a
   

    
   

Ω



   in which 2 3 1/ 3
3 3

 
   

Ω .

Answer 1 2  , 1
1
3
 

  
 

x   and 2 2  , 2
1
3

 
   

x
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 Characteristic equation 2 23 1/ 3
det( ) det (3 ) 1 0

3 3


 


  
        

Ω I

Mode 1 2   : 1

2

3 2 1/ 3
0

3 3 2
x
x

    
      

 1
1

2

1
3

x
x

   
    

  
x

 Mode 2 4   : 1

2

3 4 1/ 3
0

3 3 4
x
x

    
      

 1
2

2

1
3

x
x

   
      

x

 Eigenvalue decomposition
1

2 2 1 1 1 2 0 1 1
3 3 0 4 3 3


      

             
Ω Xω X

 Positive square root
1

1 1 1 1 12 0
3 3 3 30 2


     

           
Ω XωX 
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EXAMPLE 3.2 Write down the equations of motion for the system shown consisting of

two particles and a spring. After that, determine the angular speeds and modes of free

vibrations.

Answer 1 0  and 1
1
1
 

  
 

x  (translation mode),

2 2 k
m

  and 2
1
1

 
   

x (vibration mode).

m
k

m
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 Matrices
0

0
m

m
 

  
 

M   and
k k

k k
 

   
K  give

1
2 1 0 1 1

0 1 1
m k k k

m k k m


       

             
Ω M K

 Angular speeds of the free vibration modes are the eigenvalues of Ω . Let us calculate

first the eigenvalues of 2Ω  and the corresponding modes

2 2 2det( ) det( ) ( ) ( ) 0

k k
k km m

k k m m
m m


 



   
      

  
  

Ω I  {0,2 }k
m

 .
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1 0  : 1

2

0
0

0

k k
xm m
xk k

m m

     
   

   
  

 1
1

2

1
1

x
x

   
    

  
x ,

2 2 k
m

   : 1

2

2
0

2

k k k
xm m m
xk k k

m m m

     
   

   
  

 1
2

2

1
1

x
x

   
      

x .

 Angular speeds of the free vibrations and the corresponding modes are

1 1 0   , 1
1
1
 

  
 

x     and 2 2 2 k
m

   , 2
1
1

 
   

x . 
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TIME-INTEGRATION

In one-step methods for second order initial value problems, temporal domain is divided

into sub-domains ( 1) ( )[ , ]i it t t {1 }i n  . Differential equations are replaced by difference

equations:

( 1) ( )
0 11 12 0 1

1 21 22 1 2

i i

t t


                                

a A A a B
a A A a B  and

(0)
0 0

1 1t t
                

a a
a a

Iteration on the difference equations gives values of the unknowns ( )
0
ia and their first time-

derivatives ( )
1
ia at ( )it {0 }i n  . Iteration matrix A  depends on the mass matrix M ,

stiffness matrix K , and the step size t . Vector B depends also on the external forces.

initial conditions
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ONE-STEP INTEGRATION METHODS

The recipes for a single equation and an equation systems are the same. For problem
0 Ma Ka

Crank-Nicholson:
( 1) ( )1

0 0

1 1

/ 2 / 2
/ 2 / 2

i i

t t

       
             

a aI I I I
a aI I 

Disc. Galerkin:
( 1) ( )1

0 0

1 1

/ 2 0
/ 2 / 3

i i

t t

       
                

a aI I
a aI I I

 
 

The proper step-size of depends on the largest eigenvalue of parameter 1 2t M K . A

small amount of numerical damping is advantageous, if the step-size, according to the

largest eigenvalue, becomes impractically small.
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ACCURACY AND STABILITY 1/ 2t  & 1 / 4 

CN

DG damping!

phase error!exact in blue
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3.3 VIBRATION FEA

  Model the structure as a collection of beam, plate, etc. elements. Derive the element

contributions eW  and express the nodal displacement and rotation components of the

material coordinate system in terms of those in the structural coordinate system.

  Sum the element contributions to end up with the virtual work expression of the structure
e

e EW W  . Re-arrange to get T ( )W    a Ma Ka F .

  Use the principle of virtual work 0W   a  and the fundamental lemma of variation

calculus for n a   to deduce the equations of motion 0  Ma Ka F .

  Solve the equations for the natural angular speeds of vibrations and the corresponding

modes or solve for the displacements and rotations as functions of time.
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BAR MODE

Assuming a linear approximation to the axial displacement ( , )u x t  with respect to x , virtual

work expressions of the internal, external, and inertia forces take the forms

T
1 1int

2 2

1 1
1 1

x x

x x

u uEAW
u uh





    
         

,

T
1ext

2

1
12

x x

x

u f hW
u




   

    
  

,

T
1 1ine

2 2

2 1
1 26

x x

x x

u uAhW
u u
 

    

     
    




.

Above, xf  and , ,E A   are taken as constants.

x
E,A,ρ

h
z
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EXAMPLE 3.3 Consider the free vibrations of the bar shown, when material properties

,E   and cross-sectional area A  are constants. Determine the set of ordinary differential

equations giving as their solution the nodal displacements (assuming that initial

displacement and velocity are known). Use four elements of equal size.

Answer
2 2

3 3

4 4

2 1 0 4 1 0
1 2 1 1 4 1 0

6
0 1 2 0 1 4

X X

X X

X X

u u
EA ALu u
L

u u


       

               
             





2 3 4 5

4L
Z

X

1 1 2 3 4
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   Let us assume that the structural and material coordinate systems coincide (for

simplicity). Virtual work expressions of the elements taking into account the internal

and inertia parts are

T
1

2 2 2

0 0 01 1 2 1
( )

1 1 1 26X X X

EA ALW
u u uL




        
                  

,

T
2 2 22

3 3 3

1 1 2 1
( )

1 1 1 26
X X X

X X X

u u uEA ALW
u u uL

 


        
                  




,

T
3 3 33

4 4 4

1 1 2 1
( )

1 1 1 26
X X X

X X X

u u uEA ALW
u u uL

 


        
                  




,

T
4 4 44 1 1 2 1

( )
0 1 1 0 1 2 06
X X Xu u uEA ALW

L
 

         
                   


.
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   Virtual work expression of the structure is the sum of the element contributions
eW W   . When expressed in the “standard form”

T
2 2 2

3 3 3

4 4 4

2 1 0 4 1 0
( 1 2 1 1 4 1 )

6
0 1 2 0 1 4

X X X

X X X

X X X

u u u
EA ALW u u u
L

u u u


 



         
                    
                 





.

   Principle of virtual work 0W   a  and the fundamental lemma of variation calculus

for a give

2 2

3 3

4 4

2 1 0 4 1 0
1 2 1 1 4 1 0

6
0 1 2 0 1 4

X X

X X

X X

u u
EA ALu u
L

u u


       

               
             





. 
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 Mathematica code of the course can be used to build the set of ordinary differential

equations and check the outcome of hand calculations (details in the notebook).

In Mathematica representation, derivatives with respect to time are indicated by indices.

Therefore, e.g., [ ,0]Xnu uX n , [ , 2]Xnu uX n   (zero order derivative means function

itself).
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EXAMPLE 3.4 Consider free vibrations of a truss of three bar elements of which bar 2 is

inextensible and bars 1 and 3 massless. Determine the displacement of node 2 as function

of time. Initially, displacements are zeros and velocity of nodes 2 and 3 are U downwards.

Use linear bar elements. Cross-sectional areas of bars 1 and 3 are A  and that of bar 2 8A .

Answer
2

2 2
1( ) 2 sin( )
2Z

L Eu t U t
E L



 

L

L

1

3

2
X

Z

4

1

2
3
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 Only the displacements of nodes 2 and 3 in the Z direction matter. As bar 2 is known

to be rigid, vertical displacements of nodes 2 and 3 coincide i.e. 2 3Z Zu u . From the

figure, the nodal displacement and length of bar 1 are 1 0xu  , 2 2 / 2x Zu u  and

2h L . As the bar is assumed to be massless, inertia term vanishes and

T
1

2 2
2 2

0 01 1
1 18 8Z Z

Z Z

EA EAW u u
u uL L

 


    
           

.

 The relationships for bar 2 are 1 2x Zu u , 2 2x Zu u  and h L . The cross-sectional area

is 8A .  As the axial displacements coincide, internal part vanishes and

T
2 22

2 2
2 2

2 18 8
1 26

Z Z
Z Z

Z Z

u uALW AL u u
u u

   

    

       
    





.
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 The relationships for bar 3 are 1 0xu  , 2 2 / 2x Zu u   and 2h L . As the bar is

assumed to be massless

T
3

2 2
2 2

0 01 1
1 18 8Z Z

Z Z

EA EAW u u
u uL L

 


    
            

.

 Virtual work expression of the structure is the sum of element contributions

1 2 3
2 2 2( 8 )

2Z Z Z
EAW W W W u u ALu

L
            .

 Principle of virtual work 0W   a  and the fundamental lemma of variation

calculus T 0 0    a F a F  imply that

2 28 0
2 Z Z

EA u ALu
L

  .
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 What remains, is solving for the displacement as function of time with the additional

information of the problem description. The initial value problem consists of the

differential equation and two initial conditions:

2 22
1 0
4Z Z

Eu u
L

  0t  , 2 (0) 0Zu    and 2 (0)Zu U  .

 Solution to the equations is given by

2

2 2
1( ) 2 sin( )
2Z

L Eu t U t
E L



  0t  . 

 Mathematica code of the course can be used to solve the set of ordinary differential

equations for the nodal displacements and rotations in simple cases and check the

outcome of the hand calculations:
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3.4 ELEMENT CONTRIBUTIONS

Virtual work expressions for solid, beam, plate elements combine virtual work densities

representing the model and the element shape and type dependent approximation. To derive

the expression for an element:

   Start with the virtual work densities intw  , inew  , and extw  of the formulae collection.

  Represent the unknown functions by spatial interpolation of the nodal displacement and

rotations (see formulae collection). Substitute the approximations into the density

expressions.

  Integrate the virtual work density over the domain occupied by the element to get W .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal

displacement and rotations in terms of shape functions. In vibration analysis, shape

functions depend on x, y, z and the nodal values on time t. Time is treated as just a parameter

of the problem.

Approximation Tu N a

Shape functions T
1 2{ ( , , ) ( , , ) ( , , )}nN x y z N x y z N x y zN 

Parameters T
1 2{a ( ) a ( ) a ( )}nt t ta 

Nodal parameters a { , , , , , }x y z x y zu u u     may be only displacement or rotation

components or a mixture of them (as with the beam model).

always of the same form!
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SOLID MODEL

The model does not contain any assumptions in addition to those of the linear elasticity

theory.

T T

int
/ / / / / /
/ [ ] / / / / /
/ / / / / /

u x u x u y v x u y v x
w v y E v y v z w y G v z w y

w z w z w x u z w x u z

  
   

  


                    
                              
                           

,

T

ext
x

y

z

u f
w v f

w f


 




  
      

   
   

,

T

ext
x

y

z

u t
w v t

w t


 




  
      

   
   

,  and

T

ine
u u

w v v
w w


  




   
       
   
   





.

The solution domain can be represented, e.g., by tetrahedron elements with linear

interpolation of ( , , , )u x y z t , ( , , , )v x y z t , and ( , , , )w x y z t  in spatial coordinates.
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EXAMPLE 3.5 Consider a tetrahedron of edge length L , density  , and elastic properties

E  and 0   on a horizontal floor. Calculate the displacement 3 ( )Zu t of node 3 with one

tetrahedron element and linear approximation. Assume that 3 3 0X Yu u  , the bottom

surface is fixed, and 3Zu U and 3 0Zu   at 0t  . Stress vanishes at the initial geometry

when 3 0Zu  .

Answer: 3 2( ) cos( 10 )Z
Eu t U t
L



3

1

X,x

4 2
Y,y

Z,z

L

L

L
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 Linear shape functions can be deduced directly from the figure 1 /N x L , 2 /N y L ,

3 /N z L , and 4 1 / / /N x L y L z L    . However, only the shape function of node 3

is needed as the other nodes are fixed. Approximations to the displacement components

are

0u  , 0v  , and 3Z
zw u
L

 ,  giving 0w w
x y

 
 

 
, 3

1
Z

w u
z L





, and 3Z

zw u
L

  .

 When the approximation is substituted there, the virtual work densities of the internal

external, and inertia forces simplify to (here 0  )

T

int
3 32

1
1

(1 )(1 2

0 0
0

/ /1
0

) Z Z
E Ew u u

Lw z w z


  
  

 
  






     
           
     


     






,
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TT

ine 2
3 3

3 3

0 0
0 0 ( )

/ /
Z Z

Z Z

u u
zw v v u u
L

w w z L u z Lu


     

 


      
                   
       
       


 
 

.

 Virtual work expressions are obtained as integrals of densities over the volume:

int int int
3 30 0 0

1
6

L L z L z y
Z ZW w dV w dxdydz EL u u   

  
 

       ,

3
ine ine ine

3 30 0 0 60
L L z L z y

Z Z
LW w dV w dxdydz u u   

  
 

        .

 Finally, principle of virtual work 0W   with int ineW W W      implies that

3

3 3
1 0
6 60Z Z

LELu u
   3 3210 0Z Z

Eu u
L

  . The standard form!
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 Solution to the ordinary differential equations with the initial conditions 3Zu U and

3 0Zu   at 0t   is given by (

3 2( ) cos( 10 )Z
Eu t U t
L

 . 
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BEAM MODEL

Virtual work density of the inertia term is of the same form as that of the external force, if

the distributed external force is replaced by the “inertia force” (not a true force actually).

Virtual work density of the inertia forces of the beam is given by

T T

ine
0

0
z y y

z zz yz z

y zy zy yy

A S S A Su u v v
w S I I w A S w

S S JS I I

 
     

   


                                 
                     

 
 
 

,

in which (Bernoulli constraints) /v x    , /w x    , /v x     , and /w x     .

The terms for the bar, torsion bar, and the two ending modes follow from the generic

expression above. Often, the rotation terms in bending are omitted as negligible.
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 Let us consider the inertia term per unit length under the kinematic assumptions of the

Timoshenko beam model xu u z y    , yu v z  , and zu w y 

ine ine ine ine( ) ( ) ( ) ( )x y zA
w u u dA w w w             

  ,   where

T

ine 2

2

1

( )x x xA A

y zu u
w u u dA y y yz dA

z zy z


     

 


     
            

         

 




,

T
ine

2

1
( ) y y yA A

zv v
w u u dA dA

z z


   

 
    

        
     

 


  ,

T
ine

2

1
( )z z zA A

yw w
w u u dA dA

y y


   

 
    

        
     

 


  .
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 Assuming that cross-section geometry and density are constants, integration over the

area gives with the assumptions 0y zS S   and 0yz zyI I 

T

ine( )
z y

x z zz yz

y zy yy

A S Su u
w S I I

S I I


   

 


               
          





,

T

ine ine
0

( ) ( ) 0
y

y z z

y z

A Sv v
w w v A S w

S S J


   

 
 

    
          

        





,

 in which yy zzJ I I   , /dv dx   and /dw dx    (Bernoulli constraints).
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BAR MODE

Bar mode element contribution follows with the assumptions 0v  , 0w  , 0  , and a

linear approximation to ( )u x

T
1 1int

2 2

1 1
1 1

x x

x x

u uEAW
u uh





    
         

,

T
1ext

2

1
12

x x

x

u f hW
u




   

    
  

,

T
1 1ine

2 2

2 1
1 26

x x

x x

u uAhW
u u
 

    

     
    




.

Above, xf  and , ,E A   are taken as constants.

x
E,A,ρ

h
z
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   Virtual work density of the inertia term is of the same form as the terms coming from

the external distributed forces with xf Au   (inertia force per unit length). Hence

virtual work densities are

int u uw EA
x x
 
 

 
 

, ext
xw uf   ,  and inew u Au     .

Cross-sectional area A , Young’s modulus E , density  , and external force per unit

length xf  may depend on x and time t .

   Element approximation of the bar model with semi-discretization T( , ) ( ) ( )u x t x t N a

  1

2

1 x

x

u
u h x x

uh
 

   
 

   1

2

1 1 1 x

x

uu
ux h
 

     
 and   1

2

1 x

x

u
u h x x

uh
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   Virtual work density of the inertia force (expressions for the internal and external forces

have been discussed in MEC-E1050) is given by

T 2
1 1ine

2 22 2

( ) ( )

( )
x x

x x

u uh x x h xAw u Au
u uh x h x x

   


     
        

     






   Assuming that ,A  are constants, integration over the length gives

T
1 1ine ine

0 2 2

2 1
1 26

h x x

x x

u uAhW w dx
u u
  

    

      
    





.
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TORSION MODE

Torsion mode element contribution follows with the assumptions 0u  , 0v  , 0w  , and a

linear approximation to ( )x

T
1 1int

2 2

1 1
1 1

x x

x x

GJW
h

 


 
    

         
,

T
1ext

2

1
12

x x

x

m hW




   

    
  

,

T
1ine 1

2 2

2 1
1 26

x x

x x

JhW
 
 

    
     

    


 .

Above, xm , ,G   and J are assumed to be constants.

x
G, ρ, J

h
z
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 BENDING MODE (xz-plane)

T
1 1

2 2 2 21 1ine

2 2
2 2 2 22 2

36 3 36 3 156 22 54 13

3 4 3 22 4 13 3
( )

36 3 36 3 54 13 156 2230 420

3 3 4 13 3 22 4

z z

y yyy

z z

y y

h h h hu u
I h h h h h h h hAhW

u h h h h uh

h h h h h h h h


  

 

        
     
                      

            












 
  

The first term is negligible whenever a beam element is thin in the sense / 1t h   !

xE,ρ,Iyy

h
z
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 BENDING MODE (xy-plane)

T
1 1

2 2 2 2
1 1ine

2 2
2 2 2 2

2 2

36 3 36 3 156 22 54 13

3 4 3 22 4 13 3
( )

36 3 36 3 54 13 156 2230 420

3 3 4 13 3 22 4

y y

z zzz

y y

z z

h h h hu u

h h h h h h h hI AhW
u uh h h hh

h h h h h h h h



  


 

      
     

                      
              












 
  

The first term is negligible whenever a beam element is thin in the sense / 1t h   !

xE,ρ,Izz

h
y
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EXAMPLE 3.6 Consider bending of a simply supported beam of length L in XZ plane.

Determine the ordinary differential equations giving as their solution the rotation

components of the end nodes as functions of time. Determine also the natural angular speeds

of free vibrations and the corresponding modes. Cross-section properties A, I and material

properties E, ρ are constants.

Answer 1 42520 EI
AL




 , 1

2 1

1
1

Y

Y



   

   
  

and 2 4120 EI
AL




 , 1

2 2

1
1

Y

Y




   
   
  

L
Z,z

X,x

1 2
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 As the material and structural coordinate systems coincide here, virtual work expression

considering the internal and inertia forces simplifies to (the second bending term is

omitted in the inertia part)

T 2 2 2 2
1 1 1

3 2 2 2 22 2 2

4 2 4 3
( ) 0

4202 4 3 4
Y Y Y

Y Y Y

L L L LEI ALW
L L L L L

  
  

        
           

            


 .

 Principle of virtual work and the fundamental lemma of variation calculus give the

ordinary differential equations

3
1 1

2 2

4 2 4 3
0

2 4 3 4420
Y Y

Y Y

EI AL
L

 
 

     
             


 . 
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 Angular speeds of free vibrations ω  are the eigenvalues of Ω  which is related with the

matrices of the differential equations by 2 1 2 1  Ω M K Xω X

1
2

4 4
11 10 1 1 0 1 1

120
10 11 1 1

0
0 12

5
0 1 1

2 2EI EI
AL AL 

        
        

       
Ω .

 The latter form of 2Ω  (eigenvalue decomposition) gives

1 42520 EI
AL




 , 1
1
1
 

  
 

x  and 2 4120 EI
AL




 , 2
1

1
 

  
 

x . 
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 Mathematica code takes into account both inertia terms
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PLATE MODEL

The generic element contribution of plate is obtained by combining the virtual work

expressions of thin slab and plate bending modes. Assuming that the origin of the material

coordinate system is placed at the mid-plane and material properties are constants through

the thickness, virtual work density is given by

T
T 3

ine / /
/ /12

u u
w x w xtw v t v
w y w y

w w


   





   
                           

   








.

The planar solution domain (reference-plane) can be represented by triangular or rectangular

elements. Interpolation of displacement components should be continuous and ( , )w x y

should have also continuous derivatives at the element interfaces.
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 Let us consider (first) the virtual work density of the inertia forces under the kinematic

assumptions of the Reissner-Mindlin model xu u z  , yu v z  , and zu w .

ine ine ine ine( ) ( ) ( ) ( )x y zt
w u u dz w w w             

  ,   where

T
ine

2

1
( )x x x

zu u
w u u dz dz

z z


   

 
    

              
 


  ,

T
ine

2

1
( ) y y y

zv v
w u u dz dz

z z


   

 
    

        
     

 


  ,

ine( )z z zw u u dz w dzw          .

 Assuming that thickness and density are constants, and the origin of the z axis is placed

at the geometric centroid, integration over the thickness [ / 2, / 2]z t t   gives
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 Summing up the terms with the Kirchhoff constraints /w y     and /w x     (to

end up with the Kirchhoff model expressions) gives the final form:
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EXAMPLE 3.7 Consider the thin triangular structure shown. Young’s modulus E,

Poisson’s ratio  , and thickness h are constants. Assume plane-stress conditions and derive

the ordinary differential equations giving as their solutions the free vibrations of the

structure.

Answer:
2

1 1
2

1 1

3 11 0
1 34 121

X X

Y Y

u uhE L h
u u

 


 

      
            




1 2

3

x,X

y,Y

L

L
1
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  Nodes 2 are 3 are fixed and the non-zero displacements/rotations are 1Xu and 1Yu .

Linear shape functions 1 ( ) /N L x y L   , 2 /N x L  and 3 /N y L  are easy to

deduce from the figure. Therefore

1

1

X

Y

uu L x y
uv L

    
   

   


1

1

/ 1
/

X

Y

uu x
uv x L

    
        

, 1

1

/ 1
/

X

Y

uu y
uv y L

    
        

,  and 1

1

X

Y

uu L x y
uv L

    
   

   




.

 Virtual work densities of internal and inertia forces are given by

T
1 1

int
1 12 2

1 1 1 1

1 0
1 1 0

1 0 0 (1 ) / 2
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X Y X Y
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T
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.

 Integration over the triangular domain gives (integrand of the internal part is constant)
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T 2
1 1ine

1 112
X X

Y Y

u uLW h
u u


 


   

    
   




.

 Principle of virtual work in the form int ine 0W W W      a and the fundamental

lemma of variation calculus give

T 2
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 RIGID BODY

Inertia term takes into account translation and rotation parts which depend on the mass m

and the 3×3 inertia matrix J . For a sphere 22
5 mRJ I   (I is the 3 3  unit matrix).

T T

ext
X X X X

Y Y Y Y

Z Z Z Z

u F M
W u F M

u F M

 
  

 

       
               
       
       

,

TT

ine
X X x x
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Z Z z z

u u
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J





.

The form above assumes that the first moments of mass and the off-diagonal terms of the

second moments of mass vanish (origin of the material coordinate system at the center of

mass etc.). Expressions for large rotations are more complex.

x

y
, ,X Y ZF F F
, ,X Y ZM M M

X
ZY

z
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EXAMPLE 3.8 The mass of a cantilever (circular cross section) is negligible compared to

the mass of a rigid spherical body welded to the free end. Determine the angular speeds and

modes of the free vibrations. The mass of the sphere is m and the moment of inertia
21

5 mLJ I .

Answer 3 4 32 EI
mL

   , 5 6 330 EI
mL

   , 2 310 GI
mL

  , and 1
EA
mL

 

L
Z,z

X,x

Y,y
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 Frequency analysis by the Mathematica code gives
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EXAMPLE 3.9 Find the frequency of the free transverse vibrations of a plate strip using

the one parameter approximation 2 2(1 /( , ) ( ) () / )xw t Lx t xa L  and the virtual work

densities for Kirchhoff model bending mode. Thickness, length, and width of the plate are

t , L , and H, respectively. Young’s modulus E , and Poisson’s ratio  , and density   are

constants.

Answer: 2 2)
421

2 (1
t Ef

L  




x,X

y,Yz,Z

L

H



3-61

 Approximation satisfies the displacement boundary conditions ‘a priori’ and contains a

unknown function ( )a t  to be determined by using the principle of virtual work (the

outcome is an ordinary differential equation). The non-zero derivatives in the virtual

work densities are given by

4
22 3 41( , ) ( ) ( )2w

L
x Lx t a t L x x   22 3

4 6 4 )1( , ) ( ) (2w w x t a t L
x L

x Lx x
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2 6 6 )2( ) ( Lx xw a t L
x L




  ,
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4
3 42

2
2 2 )1( ) ( xw a Lt L

L
x x

t
 


  .

 When the approximation is substituted there, virtual work densities simplify to (omitting

the rotation term of the inertia part as negligible)

int 2 2
8

2( )6 64 Lx xDw a a L
L

     ,
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2ine 22
8

3 41 ( 2 )w t a L a
L

x Lx x       .

 Integrations over the domain ]0, [ ]0, [L H   give the virtual work expression of the

internal and inertia forces

3
int int
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1
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HEtW w d a a

L
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ine ine 1
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    .

 Principle of virtual work int ine 0W W W      a and the fundamental lemma of

variation calculus give finally
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2

4 2
630

115
0

( )L
Eta a


 


     so 2 2)

421
2 (1

t Ef
L  




 . 

 The problem can be solved numerically by using the Reissner-Mindlin plate model and

plate bending element of the Mathematica code. For example, assuming parameter

values 3( / ) / 10p L t E  , 0.33  , / 0.3H L  ,  and / 0.01t L   (thin plate), the one

parameter approximation gives 0.345Hzf   whereas the solution on the mesh shown

gives 0.349Hzf  .


