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WEEK 4: VIBRATION ANALYSIS
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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems related to vibration FEA:

O Vibration problem, natural frequencies and modes of vibration, solution to vibration

problem as the function of time.

O Time dependent linear elasticity problem, principle of virtual work in a time-dependent

case and vibration analysis by FEM.

O Inertia term element contributions for the solid-, beam-, plate-, and rigid body elements.
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VIBRATION EXPERIMENT
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TWO SMALLEST EIGENFREQUENCIES

112.301 11.2586 42.5816

Experiment 11.4 1/s 29.6 1/s
FEA 11.31/s 29.6 1/s
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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3.1 LINEAR NON-STATIONARY ELASTICITY

Assuming equilibrium of a solid body (a set of particles) inside domain €, the aim is to find
displacement G of the particles as functions of time, when external forces or boundary
conditions are changed in some manner:

o 1dA

Equilibrium equations V-6+f =pl in Q,t>0 (N

Hooke’s law & = E ( Y [V-G+&) in Q,t>0
1+v 1-2v

.. - L 1 =0
Boundary conditions n-g=t or U=¢g on 0Q,t>0 .

Initial conditions G =0, and G=Uy in Q att=0

The balance law of angular momentum is satisfied ‘a priori’ by the form of Hooke’s law.
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work oW = oW '™ + sW &+ sW" =0 V50 is just one form of the

equations of motion, where
oQ 1dA
Internal forces: sw' =_[Q Swimdy

External forces: oW = fQ SWEdV + IaQ SWEdA

Inertia forces: sW'™e = IQ SWNedv .

In connection with the principle, time is considered as a parameter and inertia term is treated
as a part of the volume force although it is not a force (it does not have a counterpart which

IS opposite in direction and equal in magnitude).
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, inertia forces, external volume forces, and

external surface forces are

- NT ) (5

Oev | | Oy Yxy | |9xy
int _ _

OWy™ =—108yy 1 YOy r=19%%yz [ \Oyz(»  Partial derivatives

(9622 Oz]) (9] 9]  with respect to time \
( N T e N e N T e N e N T (.. N
OUy fy OUy ty OUy Uy
ext _ ext _ ine _ ’
oWy =q0Uy ¢ fy e, OWR =q0uy ¢ qtyr, and owyT =—qduy  pely e
ouz ) (1) ouz ) 1tz ouz ) Uz

Virtual work densities consist of terms containing kinematic quantities and their “work
conjugates” !
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3.2 PERIODIC MOTION AND VIBRATION

Constrained motion: there exists ¢ and C such that c < x(t) <C
Periodic motion: there exists T such that x(t+T) = x(t) for any t

Vibration: "periodic motion near static equilibrium™

Harmonic vibration: X(t) = X sin et
Period T ¥ .
/\ |
Frequency f =1/T
_ T \/ v
Angular speed w=2rf 2 \-

Amplitude X =H /2
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FREE UNDAMPED VIBRATION

Initial value problem Ma+Ka=0 t>0, 4a=34, t=0, and a=ay t=0
Solution a(t) =cos(Qt)ag + sin(ﬂt)ﬂ_lao
Problem parameter Q = (M1K)Y? = XX

In practice, the main task is to find the eigenvalue decomposition Q = XoX 1 or it’s form

Q% = XX (see: the definition of matrix function)!

3-10



EXAMPLE 3.1 Determine the angular speeds and modes of free vibrations, when the

differential equations in their standard form are given by

. 1
{?1}+92{a1}=0 In which 92={3 /3}.
3.2 3.2 -3 3

1 1
Answer a)lzﬁ, x1={3} and w, =2, xzz{ 3}
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3-4 -1/3
-3 3-4

3-2 -1/3||X% Xq 1
Mode 4 =2 : =0 = Xxq= _
-3 3-2 X2 X2 3
3-4 -1/3 1
-3 3-4 X2 X2 -3

-1
1 12 0|1 1
Eigenvalue decomposition 0% = X’ Xt =
3 -3||0 43 -3

Characteristic equation det(Q2 —Al) = det{ } =(3- /1)2 -1=0

-1
1 1 1 1
Positive square root Q=XoX = V2. 0 €
3 3]0 2|3 -3
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EXAMPLE 3.2 Write down the equations of motion for the system shown consisting of
two particles and a spring. After that, determine the angular speeds and modes of free

vibrations.

1 :
Answer =0 and x4 = (translation mode),
0 1794

/ 1
Wy = 2% and X, ={_1} (vibration mode).
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. 0O m
Matrices M ={ } and K
m O

Q2 = MlK:{
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Angular speeds of the free vibration modes are the eigenvalues of Q. Let us calculate

first the eigenvalues of Q2 and the corresponding modes

det(Q? — A1) = det( ):(5—/1)2—(5)2 —0 = aie{02K3
m m m
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l\§)
Il

A, T
kK . |m m m X | Xq 1
2— . =0 = X2 = = .
m K k_gk X5 X5 -1

m m m

e Angular speeds of the free vibrations and the corresponding modes are

1 1
a)l:\/ZIO,XJ_:{l} and 0)2:\/2: 2%,X2={ 1} <«
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TIME-INTEGRATION

In one-step methods for second order initial value problems, temporal domain is divided

into sub-domains t e [tU~Y 7] i e{fl...n}. Differential equations are replaced by difference

equations:
a9 | [An [Ap]fa]” [Bi] [a0]” fa
aAt[ | Ay | Ay ||agAt B, [ 2" (aAt[ T aat

Iteration on the difference equations gives values of the unknowns a(()i) and their first time-

initial conditions

derivatives af) at t0) 1 €{0...n}. Iteration matrix A depends on the mass matrix M,

stiffness matrix K, and the step size At. Vector B depends also on the external forces.
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ONE-STEP INTEGRATION METHODS

The recipes for a single equation and an equation systems are the same. For problem
Ma+Ka=0

(i+1) B -1 (i)
Crank-Nicholson: 4 &0 ! 1/2 | 1/2|] ag
ap At al2 | —a/2 1 ||aAt

(i+1) B 1 (i)
Disc. Galerkin: %0 = « I-a/2 0 | 0
alAt —I—(X,/Z (1/3 —l —l alAt

The proper step-size of depends on the largest eigenvalue of parameter o = M™IKAL%. A
small amount of numerical damping is advantageous, if the step-size, according to the

largest eigenvalue, becomes impractically small.
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ACCURACY AND STABILITY At=1/2 & a=1/4




3.3 VIBRATION FEA

Model the structure as a collection of beam, plate, etc. elements. Derive the element
contributions SW© and express the nodal displacement and rotation components of the

material coordinate system in terms of those in the structural coordinate system.

Sum the element contributions to end up with the virtual work expression of the structure

OW =) - OW®. Re-arrange to get SW = -5a' (Md+Ka-F).

Use the principle of virtual work oW =0 Voa and the fundamental lemma of variation

calculus for sa € R" to deduce the equations of motion Ma+Ka—F =0.

Solve the equations for the natural angular speeds of vibrations and the corresponding

modes or solve for the displacements and rotations as functions of time.
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BAR MODE

Assuming a linear approximation to the axial displacement u(x,t) with respect to x, virtual

work expressions of the internal, external, and inertia forces take the forms
T
é\/\/i”t _ OUyy & 1 -1ifun
SUyo | h|-1 1 ||uym] f.
T
é\NeXt _ 5UX1 M l
5UX2 2 |1 ’

T ..
Sup, [ 6 |1 2]y,

Above, f, and E, A, p are taken as constants.
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EXAMPLE 3.3 Consider the free vibrations of the bar shown, when material properties
E, o and cross-sectional area A are constants. Determine the set of ordinary differential
equations giving as their solution the nodal displacements (assuming that initial

displacement and velocity are known). Use four elements of equal size.

(2 -1 0 (UXZN i 1 | UXZ\
EA AL )
AnSWGI’ T —1 2 —1 <UX3 >+T 1 4 1 <UX3 >:O
0 -1 2 ||uyy] 10 1 4]|Uyg]
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Let us assume that the structural and material coordinate systems coincide (for

simplicity). Virtual work expressions of the elements taking into account the internal

and inertia parts are

1 2,

pAL
6

ol

|
|

1 -1
-1 1

.
EA
i

0
5UX2

I i)
|

P AL
6

1 -1 Uy 2
-1 1 Ux3

|
|

.
EA
i

5UX2
5UX3

T(EA 1 -1 Ux 3 +pAL 2 1 UX3)
L |1 1 ||uyy 6 |1 2||liyg]

5UX3
OUx 4
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e Virtual work expression of the structure is the sum of the element contributions

OW =) 6W*® . When expressed in the “standard form”

T

(SUy o) (2 -1 0 |{uy») (4 1 O(lys)
X2 EA X2 pAL “XZ

oW = —< 5UX3> (T -1 2 -1 1 Ux 3 >+T 1 4 1 1Ux 3 >).
\5UX4, _0 -1 2_ \UX4, _0 1 4_ \UX4,

e Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus

for oa give
2 —1 07(uy, 4 1 0]ty

EA X2\ AL X

T—l 2 —1<UX3>+T 1 4 1 <UX3>:O. 6
0 -1 2 ||uyy] 10 1 4]|Uyg]
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e Mathematica code of the course can be used to build the set of ordinary differential

equations and check the outcome of hand calculations (details in the notebook).

model properties geometry
1 BAR {{E, 0}, {A}} Line[{1, 2}]
2 BAR {{E, o}, {A}} Line[{2, 3}]
3 BAR {{E, o}, {A}} Line[{3, 4}]
4 BAR {{E, 0}, {A}} Line[ {4, 5}]

{X,Y,Z} {UXJUYJUZ} {@x:@v:@z}
1 {0, 0, 0} {0, 0, 0} {0, 0, 0}
2 {L, 0, 0} {uX[1], @, @} {0, 0, 0}
3 {2L, 0, 0} {uX[2], 0, 0} {0, 0, 0}
4 {3L, 0, 0} {uX[3], 9, 0} {0, 0, 0}
5 (4L, 0, 0} {0, 0, 0} {0, 0, 0}

In Mathematica representation, derivatives with respect to time are indicated by indices.

Therefore, e.g., uy, ~uX[n,0], Uy, ~uX[n,2] (zero order derivative means function
itself).
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EXAMPLE 3.4 Consider free vibrations of a truss of three bar elements of which bar 2 is
inextensible and bars 1 and 3 massless. Determine the displacement of node 2 as function
of time. Initially, displacements are zeros and velocity of nodes 2 and 3 are U downwards.

Use linear bar elements. Cross-sectional areas of bars 1 and 3 are A and that of bar 2 </8A.

2
Answer uzz(t)=2U ﬁsin(lt i)
\ E 2\ %p
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Only the displacements of nodes 2 and 3 in the Z —direction matter. As bar 2 is known
to be rigid, vertical displacements of nodes 2 and 3 coincide i.e. uy, =u,5. From the
figure, the nodal displacement and length of bar 1 are u,; =0, Uy, :uzzlx/f and

h=+/2L. As the bar is assumed to be massless, inertia term vanishes and

.
0 EA| 1 -1 0
SWi=— — =—ou u
{5‘122} @L{—l 1}{‘122} ZZ@L 22

The relationships for bar 2 are u,; =u,,, U,» =Uy, and h = L. The cross-sectional area

is /8A. As the axial displacements coincide, internal part vanishes and

T )
ou 2 1||u
éwzz_{ zz} px@AL{ H..ZZ}Z_P\@AwUzzUzz-

5UZZ 6 1 2 Uz o
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e The relationships for bar 3 are u,; =0, Uy, =—-U> /N2 and h=+/2L. As the bar is

assumed to be massless

T
0 1 -1 0
é\Ngz— E _—5UZZ EA Uz»o.
~Suz,) BL|-1 1 ]|-uz, J8L

e Virtual work expression of the structure is the sum of element contributions

OW = SWL+ W2 + W3 = —5Uy (=2t 5 + py/BALU ).

J2L

e Principle of virtual work oW =0 Vda and the fundamental lemma of variation

calculus sa'F=0vsa < F=0 imply that

EUZZ +,O\/§ALUZZ =0.

JaL
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e What remains, is solving for the displacement as function of time with the additional
Information of the problem description. The initial value problem consists of the

differential equation and two initial conditions:

UZZ‘FEiUZZZO t>0, Uzz(O)ZO and Uzz(O)ZU

4 ,OLZ

e Solution to the equations is given by

[ 2
U5 (t) =2U ﬁsin(it i) t>0. €
E 2 |_2p

e Mathematica code of the course can be used to solve the set of ordinary differential
equations for the nodal displacements and rotations in simple cases and check the

outcome of the hand calculations:
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model properties geometry

1 BAR {{E, 0}, {A}} Line[{1, 3}]
BAR [{E, 0}, {22 A}} Line[{2, 3}]

3 BAR {{E, 0}, {A}} Line[ {4, 2}]
{XJYJZ} {UKJUYJUZ} {SXJGYJSZ}

1 {6,0, 0} {0,0, 0} {0, 0, 0}

2 {L, 9, 0} {0, 0, uZ[2]} {0, 0,0}

3 {L, @, L} {0, 0, uZ[2]} {0, 0, 0}

4 {0, 0, L} {0, 0, 0] {0, 0, 0]

20sin|tt [ 2|
{uzm N | }
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3.4 ELEMENT CONTRIBUTIONS

Virtual work expressions for solid, beam, plate elements combine virtual work densities

representing the model and the element shape and type dependent approximation. To derive

the expression for an element:
O Start with the virtual work densities 5Wig9t, §wig5‘e, and 5w8‘t of the formulae collection.

O Represent the unknown functions by spatial interpolation of the nodal displacement and

rotations (see formulae collection). Substitute the approximations into the density

expressions.

O Integrate the virtual work density over the domain occupied by the element to get oW .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal
displacement and rotations in terms of shape functions. In vibration analysis, shape
functions depend on X, y, z and the nodal values on time t. Time is treated as just a parameter

of the problem.

Approximation u=NTa always of the same form!
Shape functions N ={N;(x,V,z) No(x,y,z) ... N (xy,z)}
Parameters a={a(t) a,t) ... a, (t)}T

Nodal parameters ae{ux,uy,uz,HX,Hy,Hz} may be only displacement or rotation

components or a mixture of them (as with the beam model).
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SOLID MODEL

The model does not contain any assumptions in addition to those of the linear elasticity

theory.
(osulox)'  (euléx) [asuloy+osviex)'  (ouldy+oviox)
SWt =—1osvioy !t [E]Rovioy +—Loovioz+o5wloy s Glovioz+owlay .,
oow/ oz ow/oz| |0ow/ox+0oouloz) (ow/ox+ou/ oz

(su)’ f, (su)’ t, (su)l' ()
OWG Xt _J syl <fy>, 5W§§:< oV ¢ <ty>, and owgq ne _ _J syt PV ¢
k5WJ fz k5WJ tz \5WJ \WJ

The solution domain can be represented, e.g., by tetrahedron elements with linear

interpolation of u(x,y,z,t), v(x,v,z,t), and w(x, Yy, z,t) in spatial coordinates.
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EXAMPLE 3.5 Consider a tetrahedron of edge length L, density o, and elastic properties
E and v =0 on a horizontal floor. Calculate the displacement u,,(t) of node 3 with one
tetrahedron element and linear approximation. Assume that uy s =uy3 =0, the bottom

surface is fixed, and u,; =U and u,53 =0 at t =0. Stress vanishes at the initial geometry

When U23 - .

e
R

o
e
R
G,
S
- B e T e 5
J— R
pu— _— ey S . S
. Z B e R H e
P e £ el
SR, S 0 0 - A
R ! PR K
SR it %
£ = 2%
SE a b
s » ]

& TR
W amE
i W,
"
i

i
e
SRy S
R R R
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Linear shape functions can be deduced directly from the figure Ny =x/L, N, =y /L,
Ny=z/L,and N, =1-x/L-y/L-z/L.However, only the shape function of node 3
IS needed as the other nodes are fixed. Approximations to the displacement components

are

4 .. OW oOw ow 1 4
u=0,v=0,and w=—uy4, giving —=—=0, — = —U4, and w=—1Ui,,.

| 1z3 giving x oy p Z3 | Z3
When the approximation is substituted there, the virtual work densities of the internal

external, and inertia forces simplify to (here v =0)

0 T 1-v v V 0
int E E
5WQ = —< 0 > | 4 1-v | Z2 0 >=——Uz35UZ3,
1+v)1-2v) |_2
kaéwlaz) 1% v 1-v \aw/az)
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VT ¢

(su)T () 0 0
swit=_lsvl plul=—t 0 L 5l o0 >:—p(f)25u23u23.
k5W} k\]\./) \Z/ L5UZ3) \Z/ LUZ3)

Virtual work expressions are obtained as integrals of densities over the volume:

L-z ¢L-
é\Nmt J‘ SW. Intdv J- J- ZJ‘ =y SW 'ntdxdde—_%EL5UZ3uZ3’

3
L-z oL-
éW'”e—j Swihedv = j j Z_[ Y sw, InedXdde——%é‘UZ?)UZg.

Finally, principle of virtual work SW =0 with W = W '™ + sW'™ implies that

3
%ELuZ3+%uZ3_O < ly3+10—=uy3=0. Thestandard form!

pL?
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Solution to the ordinary differential equations with the initial conditions u,; =U and

uy3=0 at t =0 is given by (

uz3(t) =U cos( l0——1). €
ol B

3-36



BEAM MODEL

Virtual work density of the inertia term is of the same form as that of the external force, if
the distributed external force is replaced by the “inertia force” (not a true force actually).

Virtual work density of the inertia forces of the beam is given by

- Su N T A _SZ _Sy - G 3 ré‘V\T_ A 0 _Sy_ r\,/,\
OWGH. =—1 Sy ¢ | =S, 1, ly, [Py p—qow, | O A S, |pyWy,
k—§6) __Sy Izy Iyy i \_9) k5¢) __Sy SZ J | k¢)

in which (Bernoulli constraints) w =dv/ox, 8 =—ow/ox, =Vl ox, and 6 =—oW/ ox.
The terms for the bar, torsion bar, and the two ending modes follow from the generic

expression above. Often, the rotation terms in bending are omitted as negligible.
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e Let us consider the inertia term per unit length under the kinematic assumptions of the

Timoshenko beam model uy =u+2z0-yy, Uy, =V—-Z¢,and u, =w+ y¢

5w'”e_—j (P - 5UYAA = (SWHE)y + (SWE®)y + (SWes®),, where

r 5u N T B 1 _y _Z_ - u 3
(SWSeY, = j Su, pli, dA=—{ Sy | jA —y y? yz|pdAl it
|—00 -z zy 22_ -0
T ..
OV 1 -z '
ine
(OWG')y = j Suy pliy dA——{5¢} jA L Zz}pdA{é},
T ..
OW 1y W
|ne
(W), ==, uzpl, dA——{5¢} R L/ yz}pdA{é}.



e Assuming that cross-section geometry and density are constants, integration over the

area gives with the assumptions Sy =S, =0 and I, =1,, =0

- Su N T A _SZ —S - (i 3
(SWOT)y =< o + | =S,
—-00| | _S

" J

I,y |y Vs

>,
<
—
|
>
o
|
w
<
|
<

(§W}Qe)y+(§w5‘e)zz—<§v> 0 A S, |p3wy,

<
|
w
<
w
N
=

inwhich J =1y, +1, , y=dv/dx and & =—dw/dx (Bernoulli constraints).
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BAR MODE

Bar mode element contribution follows with the assumptions v=0, w=0, ¢ =0, and a

linear approximation to u(Xx)
T
é\/\/i”t:_ OUyy & 1 -1ifun
SUyo | h|-1 1 ||uym]
T
é\NeXt: 5UX1 M l
5UX2 2 |1 ’

T ..
éV\/ine:_ 5uxl ,OAh 2 1 Uyq .

Above, f, and E, A, p are taken as constants.
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Virtual work density of the inertia term is of the same form as the terms coming from

the external distributed forces with f, =—pAu (inertia force per unit length). Hence

virtual work densities are

OX OX

Cross-sectional area A, Young’s modulus E, density p, and external force per unit

length f, may depend on x and time t.

Element approximation of the bar model with semi-discretization u(x,t) = N(x)" a(t)
u u u
u=thox xp el o M Loy Bl gy godihox x))od
h oX h h

Uy Uyo Uy
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Virtual work density of the inertia force (expressions for the internal and external forces
have been discussed in MEC-E1050) is given by

Swine — _SUpAl = _{&Jxl }T ,O_A{(h — X)2 X(h— X)}{le}

SUyp | h? X(h—X) X2 Uyo

Assuming that A, p are constants, integration over the length gives

T ..
é\Nine:-“h 5WinedX:— 5uxl ,O_Ah 2 1 Uyq &
o " Suo| 6 |1 2]y,
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TORSION MODE

Torsion mode element contribution follows with the assumptions u=0, v=0, w=0, and a

linear approximation to ¢(x)
T
Mint:_{59xl} G_J{l _1}{6&1}
00| h|-1 1|6 -
564" mh (1
é\NeXt _ x1 X
50| 2 1]

T .
5\Ni”e :_{59x1} ,OJh {2 1}{%1}
59)(2 6 |1 2 9)(2

Above, m,, G, p and J are assumed to be constants.
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BENDING MODE (xz-plane)

HHHHHlHH

(Su )" 36 —3hi-36 —3h] (156 —22hi 54 13h ] (U,

_ 50 l,y | -3h 4h% | 3h —h? —22h 4h? —13h -3n? | |0
owme — 2 . y 1> (,0 Yy +'0Ah )<yl
Su,,[ ~30h |-36 3h 36 3h | 420| 54 -13h:156 22h | |U,,
50y2 —3h —h?| 3h 4h? | | 13h -3h% 22h 4h? | [Oy2

The first term is negligible whenever a beam element is thin in the sense a =t/ h <<1!
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BENDING MODE (xy-plane)

(Su,)' 36 3h i-36 3h] (156 22h | 54 -13n] (U,
2 2 2 2 2]
swyine ) 0% | 21z 3h_4h® -8h —h® | pAh| 22h 4h® 130 -3 )<-€51">
Suyp|[ 30h|-36 —3h; 36 —3h| 420| 54 13h 156 -22h| |uy,
56,, | | 3h —h?{-3h 4h? |—13h —3h% | —22h 4h? | |6,

The first term is negligible whenever a beam element is thin in the sense a =t/ h <<1!
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EXAMPLE 3.6 Consider bending of a simply supported beam of length L in XZ —plane.
Determine the ordinary differential equations giving as their solution the rotation
components of the end nodes as functions of time. Determine also the natural angular speeds

of free vibrations and the corresponding modes. Cross-section properties A, | and material

properties E, p are constants.

1
Answer @ = [2520 EI4, {&1} :{} and , = 120 EI4, {&1} =
p ALY (&2, U p ALY &2,
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As the material and structural coordinate systems coincide here, virtual work expression

considering the internal and inertia forces simplifies to (the second bending term is

omitted in the inertia part)

aw __{(%h}T E a? 212 {@1}+pAL 42 312 {@1})_0
2] |22 42 ||&2) 420(_312 42 ||&2)
Principle of virtual work and the fundamental lemma of variation calculus give the

ordinary differential equations

Ell4 2 53(1+,0A|—34 -3 5.3(1_0 «
L2 4||&,] 420|-3 4|4,
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e Angular speeds of free vibrations o are the eigenvalues of Q which is related with the
matrices of the differential equations by Q% = MK = X’ X1

o2 10 E' [11 10] [1 1] Er [2520 0 71 17t
HPAL4[10 11 |1 1 [,A%l0 1201 1]

e The latter form of Q? (eigenvalue decomposition) gives

1 -1
o = 2520 El R X1 = and Wy = 120 El 1 Xo = o
p AL 1 p AL 1
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e Mathematica code takes into account both inertia terms

| model properties geometry

1 | BEAM ({E, G, p}, {A, I, I}}  Line[{1, 2}]
| XJYJZ {Ux, Uy, Uz} {Ox>6v,67}

1 ‘ {(6,0,0}  {0,0,0] {0, 6Y[1], 0}

2 {LJ 9: e; {BJ‘ 9) 9 {61 -5'YI_2_|, @}

ET (AL2+1fan

Hm[lj 5670

, (6Y[1] > 1, 6Y[2] - 1}},
(A2 L®+52AL*T + 420 L2 12) 0

EI (AL2+421)

{w[ZJ 5 24/30

, (8Y[1] - -1, 8Y[2] el}}}
(A*L°+52AL T +420L°T%) p
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PLATE MODEL

The generic element contribution of plate is obtained by combining the virtual work
expressions of thin slab and plate bending modes. Assuming that the origin of the material
coordinate system is placed at the mid-plane and material properties are constants through

the thickness, virtual work density is given by

(5U\T fu.\ / T 3 ../
swihe =l sv b toJVp— oW/ OX tp oW/ ox .
Sw i oowloy| 12 |ow/oy

" J " J

The planar solution domain (reference-plane) can be represented by triangular or rectangular

elements. Interpolation of displacement components should be continuous and w(X,Y)

should have also continuous derivatives at the element interfaces.
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e Let us consider (first) the virtual work density of the inertia forces under the kinematic

assumptions of the Reissner-Mindlin model u, =u +6z, uy,=v-¢z,and u, =w.

5w'”6_—j (Pl - 5T)dz = (W) + (GWES)y +(SWG®),, where

wine sul' 1 -z u
ine sv)' 1 -z v
(Swg )y = j suy ply, dz——{5¢} j LZ Zz}pdz{gz},

(SWSe), = —j ou, pli,dz = —5WJ pdzv.

e Assuming that thickness and density are constants, and the origin of the z —axis is placed

at the geometric centroid, integration over the thickness z e[t/ 2,1/ 2] gives
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S iney ou T t 0 U
( Wo )X__{_ép} 0 t3/12 ,0{_9},

S iney Y ! t 0 v
(O )y‘_{&s} 0 t3/12 ”{&5}’

(SWEY, = —Swt pW.

Summing up the terms with the Kirchhoff constraints ¢ =ow/ody and 8 =—ow/ox (to

end up with the Kirchhoff model expressions) gives the final form:

( \T (oo
ou U

st _ | sl ool [oowlox " 13, [/ ox
Sw P i oow/oy| 12 |ew/oy|
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EXAMPLE 3.7 Consider the thin triangular structure shown. Young’s modulus E,
Poisson’s ratio v, and thickness h are constants. Assume plane-stress conditions and derive

the ordinary differential equations giving as their solutions the free vibrations of the

structure.

Answer: i hE
412




Nodes 2 are 3 are fixed and the non-zero displacements/rotations are uy, and uy;.
Linear shape functions N;=(L—x-y)/L, N, =x/L and N;=y/L are easy to

deduce from the figure. Therefore

) -

Vv L Uy 1

oulox| 1 |uxy ouloy| 1 |uxs and Ul L-x-y|lxs
oV | OX B L Uy 1 ’ 8V/8y B L Uy 1 ’ V B L U.Yl .

Virtual work densities of internal and inertia forces are given by

5UX1 1! _1 1% 0 1( Ux1 )
OWn =—3  OUyg > 21,2 v 1 0 T Uy1 ¢
\5UX1+5UY1, _0 0 (l—V)/Z_ \qu+qu)



T
5UX1
swint = _ SUy1 > % hE2
\5UX1+5UY1, 1-v
T
syint __JoUxi| 1 hE |3-v
5UY1 41—1/2 1+v
- ou T u L
Mlne:_{5 Xl} hp{--XI}IO J‘
Uy1 Uy

)

L—x
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Principle of virtual work in the form oW = oW '™ + sW '™ =0 Vv &a and the fundamental

lemma of variation calculus give
- T 2 .
ou 3—-v 1+ u U ou

oW =—4" H (l nE R +L—h,0 M T2 BRI G
\5UY1 41—1/2 1+v 3-v Uy 1 12 Uy 1 5UY1

(3—-v 1+v][u 2 (i
i hE | %4 1% X1 -|—L—hp ”Xl _0. «
41_1/2 _1+V 3—v Uy 1 12 Uy 1
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RIGID BODY

Inertia term takes into account translation and rotation parts which depend on the mass m

and the 3x3 inertia matrix J. For a sphere J = %mRZI (1 is the 3x3 unit matrix).

r5ux\T KFX\ rgex\T KMX\
é\NeXt:<5uY > s Ry 08 + My ¢, Fx . Fy . Fz
ouy | |F ) |667] (Mg y Myx,My,Mz

’ £

; N T PN - NT e Y

SWne = _J Ouy r mMqly r—4006y J:6

ouz | Uz ] |60, |6, z,

\

The form above assumes that the first moments of mass and the off-diagonal terms of the
second moments of mass vanish (origin of the material coordinate system at the center of

mass etc.). Expressions for large rotations are more complex.
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EXAMPLE 3.8 The mass of a cantilever (circular cross section) is negligible compared to
the mass of a rigid spherical body welded to the free end. Determine the angular speeds and

modes of the free vibrations. The mass of the sphere is m and the moment of inertia
J =Y mLl.

EA
Answer W3 =Wy = 2E—|3,605=a)6= 3OE_I3,(02= ]_OG_IS’and =, |—
mL mL V' mL mL
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Frequency analysis by the Mathematica code gives

w[1] » |22 {uX[2] -1, uY[2] -0, uZ[2] -0, 6X[2] -0, 6Y[2] -0, 6Z[2] >0}
w[2] > /10 LGB—I {uX[2] -0, uY[2] -0, uzZ[2] -0, 6X[2] -1, 6Y[2] -0, 6Z[2] -0}
w[3] >~2 5=  {uX[2] -8, uY[2] >3-, uz[2] 50, 6X[2] - @, OY[2] -0, 6Z[2] > 1}
{ux[2] > @, uy[2] >0, uZ[z}a—%,exme@,evmel,ezme@}
w[5] = 2 \/% [ux[2] >0, uv[2] - 3L uzZ[2] -0, 6X[2] -0, 6Y[2] -0, OZ[2] -1}
{

uX[2] - @, uy[2] >0, uz[2] »-2-, 6X[2] >0, 6Y[2] > 1, 6Z[2] > 0|
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EXAMPLE 3.9 Find the frequency of the free transverse vibrations of a plate strip using
the one parameter approximation w(X,t)=a(t)(1—x/ L)2(x/ L)2 and the virtual work
densities for Kirchhoff model bending mode. Thickness, length, and width of the plate are
t, L, and H, respectively. Young’s modulus E, and Poisson’s ratio v, and density p are

constants.

E
pL—v?)

Answer: let\/42

277 |2
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Approximation satisfies the displacement boundary conditions ‘a priori’ and contains a
unknown function a(t) to be determined by using the principle of virtual work (the
outcome Is an ordinary differential equation). The non-zero derivatives in the virtual

work densities are given by

wix, ) =at) = (52 -208 +x%) = g—wzw(x,t)=a(t)i4(2L2x—6Lx2+4x3),
L X L

2 2
a—‘;" — a(t)%(Lz —6Lx+6x?), a—‘z"’ = a(t)%(LZXZ —2Lx° +x%).
OX L ot L

When the approximation is substituted there, virtual work densities simplify to (omitting

the rotation term of the inertia part as negligible)

Swint = —a§a428(L2 —6Lx+6x%),
L
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3

8 (L2 2 _2Lx3 + x4)25a.

SWie = —tpd

Integrations over the domain Q =]0, L[x]0, H[ give the virtual work expression of the

internal and inertia forces

1 HEt
15 13(1-v?)

swnt = jQ SwWitdQ = —asa

oW = [ swrtdQ = _Sa—_tLH pa.
0 630

Principle of virtual work SW = oW '™ + sW'™ =0 v 5a and the fundamental lemma of

variation calculus give finally
1 HEt® 1 1 HEt 1

oW =-oda a+—_—tLHpd) =0 Vda a+—_—tLHpd =0
5302 ez P = 1531-,2) 630  ©
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d €

2
630 Et _ 1t 49 E
277 |2

+ a=0 so f — .
15 4 p@-v?) p(l—v?)

The problem can be solved numerically by using the Reissner-Mindlin plate model and
plate bending element of the Mathematica code. For example, assuming parameter
values p(L/t)®/E =10, v=0.33, H/L=0.3, and t/L=0.01 (thin plate), the one
parameter approximation gives f =0.345Hz whereas the solution on the mesh shown
gives f =0.349Hz.

Y
0.30 -
025}
0.20 |
015
0.10}
0.05}

0.2 0.4 0.6 0.8 1.0
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