MEC-E8001 Finite Element Analysis, week 4/2023

4 0
1. Determine the eigenvalue decomposition A = XX~ and v/A when A:{ " J.

Answer A=XkX‘1:{_3 0}{4 0}{_1/3 0} and \/_:J_{ 2 0}

1 1)0 1|1/3 1 -1/3 1

2. Derive the consistent mass matrix M of a two-node beam element (bending in xz-plane). Assume
that density is constant, cross section is constant, and the beam element is thin in the sense
t/h<1,so that Sw® = —Swp AW,

[ 156 -22h | 54  13h |

—22h  4h%? | —13h —-3h?
Answer M = pAN
420 54 —-13h i 156 22h

13h  —3h% i 22h  4h?

3. The XZ-plane structure shown consists of two massless
beams and a homogeneous disk considered as a rigid
body. Derive the equations of motion in terms of dis-
placements u;, and & ,. Young’s modulus of the
beam material and the second moment of area are E
and 1, and the mass and moment of inertia of the disk
are m and J, respectively.

Answer E—;{M OZHUZZ}j{m OHQ.ZZ}=0
"L 0 8L (&2 [0 J &2
4. The rotor of the machine shown rotates with angular
speed Q. Determine the bending stiffness El so that
the angular speed (free vibrations) of the foundation-
machine system coincides with Q. The foundation is

modeled as two massless beams and the machine as a
particle of mass M. Assume that &/, =-6,3 and

&2 =0.

Answer El :%mL3Q2



XZ-plane structure shown consists of a beam and a homogeneous disk
considered as a rigid body. Derive the equations of motion in terms of
uz,, &, and determine the angular speeds of free vibrations. Assume
that mass of the beam is negligible compared to that of the disk and
that the beam is inextensible in the axial direction. Young’s modulus E
of the beam material and the second moment of area | are constants.
Mass and moment of inertia of the disk are m and J =}§mL2I , re-
spectively.

Answer oy =4 =2 % w, =[25 =30 f%

Node 4 of a thin rectangular slab (assume plane stress

conditions) is allowed to move horizontally and nodes 1, A
2, and 3 are fixed. Derive the initial value problem giv-
ing as its solution the horizontal displacement uy 4(t) of
node 4 as function of time, if uy,(0)=U and
Uy 4(0) =0. Use just one bilinear element. Material pa-
rameters E, v=0, p and thickness h of the slab are

constants.

Answer Ux4+giUx4=0 t>0, Ux4(0)=U ) Ux4(0)=0
2|_2p

The beam of the figure is subjected to moment M when

t<0. At t=0, the moment is suddenly removed and the
beam starts to vibrate. Derive the initial value problem giv-

ing & ,(t) for t>0. The beam is thin so that the rotational | ;
part of the inertia term is negligible. The geometrical quan-
tities of the cross-section are A, | and the material constants

E and p.

AL .. 1ML .
e tha=0 150, (0 =727 r2(0) =0

Answer 4%6\(2 +

Y,y
Node 1 of a thin rectangular slab (assume plane stress

conditions) is allowed to move horizontally at node 1 1 !
whereas nodes 2, 3 and 4 are fixed. Derive the expression
of horizontal displacement uy4(t) of node 1 as function
of time, if uy,(0)=U and uy(0)=0. Use two linear
triangle elements. Material parameters E, v, p, and

thickness h of the slab are constants. y

Answer uy(t) =U cos(t Es;vziz) t>0
21-v* pL



10.

Bars 1 and 3 of the structure shown are massless and bar 2 is
rigid. Force F is acting on node 2. Determine the displace-
ment uz,(t) of node 2 for t> 0, if the force is removed at
t=0. Young’s modulus of bars 1 and 3 is E and density of
bar 2 is p. Cross-sectional area is constant A.

J2L

Answer uz,(t) = F—cos(— t>0

fp)

A plate is simply supported on two edges and free on the
other two edges as shown. Use the approximation
w(X, y,t) =a(t)xy/ L> to determine the transverse dis-
placement as function of time t > 0. Material properties
E, v, and p are constants and thickness of the plate is
h. At t=0, initial conditions are W(x,y,0)=0 and
w(x,y,0) =Uxy/ L. Assume that the plate is thin so that
the rotation part of the inertia term is negligible.

G h . xy

Answer w(x,y,t) =U cos( 3——) > t>0
/0L L




4 0
Determine the eigenvalue decomposition A = X3X~1 and VA when A:{ " J.

Solution
Let us solve for the eigenvalues first from det(A—-A41)=0

4
de{ A0 }:(4-1)(1-1):0 & A=1or A-4,
-1 1-2

The corresponding eigenvectors x follow from (A—A1)x=0 when the eigenvalues are substituted
there

4-1 0 |fa 0
A =1: =0 = a=0 = x= ,
-1 1-1]|1 1
4-4 0 |]a -3
A =4: =0 = a=-3 = Xy= :
-1 1-4]|1 1

Therefore

A sax 1[0 3L offus 1] o
1 110 4|-1/3 0

Let us use the definition: if A=XaX"1 then f(A)=Xf (X)X‘l. When applied to the present case
of a square root

ﬂzX(iﬁ)X_lz{g ﬂ{{f %Mll/f’g ﬂ:i{_fm ﬂ &



Derive the consistent mass matrix M of a two-node beam element (bending in xz-plane). Assume
that density is constant, cross section is constant, and the beam element is thin in the sense t/h <« 1,
50 that SWh® = —Swp A

Solution

The starting is the virtual work density of inertia forces and the element approximation of the beam
model (see the formulae collection)

-
1-&2a+28)] [ uyt) Suy )" [@-&)?@+2¢)
_ £)2 -0 “h(1-¢&)?
Wix. ) = h@-£)"¢ ya(t) L Swixt) = 56y, (t) hl-£)°¢ |
(3-2£)&2 Uz (t) Sz ()| | (3-2£)&2
he2e-y | 020 O] | _ng2 (s

1-6%a+22)] [,
~he-8)? | |0
(3—2&)&2 Uz (1)
he2(e-1) | 920

W(xt) = (here & =%).

Virtual work expression of the inertia forces consists of terms taking into account translation and
rotation of the cross-section. Here, rotation part is assumed to be negligible so that

ine _

5WQ = —5WpAW .

When the approximation is substituted there, virtual work density takes the form

T 2 Y T ..

Suy 1-£°@+28)| [(1-0%(1+28)| [y
P L A -hE-8)? || -h&-&) %
SUzz (3-28)&2 3-28)¢* | Yz

0y2 he?(e-1) || —hee-n | 9

Integration over the spatial domain gives (use Mathematica in this step)

suy)'  [156 -22h 54  13h (i,
80y1| panh|-22h 4h? -—13h —3n?|| 6y
Su,,[ 420| 54 —13h 156  22h ||i,,
50y, 13h  -3n%  22h  4h? | |92

é\/\/i”e:_

Therefore, the mass matrix



(156 —22h 54  13h ]

_ pAh|-22h 4h* -13h -3h?
420| 54 -13h 156 22h

13h  —3h? 22h  4h?




The XZ-plane structure shown consists of two massless
beams and a homogeneous disk considered as a rigid body.
Derive the equations of motion in terms of displacements
uz, and & ,. Young’s modulus of the beam material and
the second moment of area are E and | , and the mass and
moment of inertia of the disk are m and J , respectively.

Solution

The non-zero displacement/rotation components of the structure are uz, and &, . Let us start with
the element contributions. Since the beam is assumed to be massless, only the virtual work expres-
sions of the internal forces (available in the formulae collection) is needed.

0 T [ 12 6L -12 —6L] 0
swi__| 0 | Erf-6L 42 6L 22| 0 :_{5UZZ}TE|:12 6LHUZZ}
Suz,| 13]-12 6L 12 6L ||uz, 585 13|6L 4L ||&2]

56 6L 21% 6L 4% |62

- PO
SUizs 12 -6L -12 -6L](y,, i

S, | EI|-6L 4% 6L 212 ||&,| ([duzp] EIf 12 —6L](uz,
0 [ 18]-12 6L 12 6L || 0| |6&,| 3|-6L 42|45
0 6L 212 6L 42|l 0

Element contribution of the rigid body (formulae collection) simplifies to

T T

0 0 0 0 T )
3 .. B 5U22 m O Uzo
owi3=-1 0 ' mlol-dsa,t 13d,l=" 22|
s ) 0, ] |0 J](&2
Uz o Uzo 0 0

Virtual work expression of structure is the sum of element contributions.

T "
Su 240 |(u m 0]
éW:éW1+éW2+éW3=—{ 22} (E—3I ) {22}{ H..ZZ}).
o) 3|0 8L4|(&2) LO J]|&:
Finally, principle of virtual work and the fundamental lemma of variation calculus imply a set of
ordinary differential equations:

24 0 |(u m O][u
E—3I ) { zz}j{ H..ZZ}:O. €
"L 0 8L (&2 [0 J]l&:
The angular speeds of free vibrations can be deduced from the stiffness and mass matrix of the equa-
tion system

24 0 24/m 0
M=|" 0 and K = EF S o?-mik=E .
0 J 13| 0 8L2



The angular speeds of free vibrations are the eigenvalues of €. Let us start with the eigenvalues of
2 -1
Q°=M"K

EI[24/m 0 10 El El El _El
det(— .y — (24— -2)B8—-1)=0 = Ae{24—_,8—1}.
(L3|: 0 8L%/J 0 1) mL3 TR { mL® i

Eigenvalues of Q are square roots of eigenvalues of 0?

o =X = 24% and w, =\[4, = 8%. 3



The rotor of the machine shown rotates with angular speed
Q. Determine the bending stiffness El so that the (small-
est) angular speed of free vibrations of the foundation-ma-
chine system coincides with Q. The foundation is modeled
as two massless beams and the machine as particle of mass
M. Assume that & =—-6/3 and &, =0.

Solution

The non-zero displacement/rotation components of the structure are uz,, &1, and &3 =-6. Let
us start with the element contributions. Since the beam is assumed to be massless, only the virtual
work expressions of the internal forces (available in formulae collection) is needed.

o \T [12 -6L -12 -6L]( g
.

swio_) | EI|-6L 4% 6L 21" |4y | [o6n] EIf4® 6L|[6n
Suz,| 13]-12 6L 12 6L ||uy, Suzo| 13| 6L 12 ||Uzp]’
0 6L 2L 6L 42l 0
suy, |t [12 -6L 12 6Ly,

sw2__) O | E1j-eL 4® 6L 2% )] 0 | foay Tei[a2 6L |
0 13|12 6L 12 6L 0 Suzo| 3] 6L 12 ]|Uzs
—661 6L 212 6L 4L |"%n

Element contribution of the rigid body (formulae collection) simplifies to

T T

0 01 (0" [0 . )
w3 B
ou 0 mi|ty,|

5U22 UZZ 0 0 z2 "z2

Virtual work expression of structure is the sum of element contributions.

T ..
éW:éW1+éW2+éW3=—{§6yl} (E—;[&Z 12LH&1}{0 OHﬁl}) .
uzo| 3|12L 24 ||uzz) |0 m||Uy,

Finally, principle of virtual work and the fundamental lemma of variation calculus imply a differential
algebraic system (DAE):

(EL[8 12 {&1}{0 0} bl _y

120 24 [luzo) [0 m]lug,|

Let us eliminate the rotation from the differential equation by using the algebraic equation
8L26\(1+12Lu22:0 < G =-Uz,3/(2L). Therefore

%(12L@1+24U22)+mU22=0 Rt %6[]224‘”1”22:0 or UZZ +6%U22=0.



The angular speed of free vibrations should match the angular speed of rotor (the condition of reso-
nance and increasing amplitude in vibrations)

o= l6E o = m=1mB2a?. €
mL3 6



The XZ-plane structure shown consists of a beam and a homogeneous disk
considered as a rigid body. Derive the equations of motion in terms of uz , :
, 6, and determine the angular speeds of free vibrations. Assume that L @
mass of the beam is negligible compared to that of the disk and that the :
beam is inextensible in the axial direction. Young’s modulus E of the beam

material and the second moment of area | are constants. Mass and moment
of inertia of the disk are m and J = % mL?1, respectively.

X, X |

Solution
Virtual work expressions of the beam and rigid body elements are given by (inertia contribution is
omitted from the beam contribution and rigid body has only the inertia part)

12— 6—
swi__) 0 | E1j-6L 4% 6L 2|0 |_ [suzp,|'| T U2 |[uzs
Suzo| 13|-12 6L 12 6L ||ug, Sy} | GBI, El ol
o) 6L 212 6L 4l2 &2 2L
0" (o 01" (o m o7 .
2 .. B 5U22 Uzo
oW =-4 0 my 0 =206, ¢ J{6/5 _—5® mL2 G, |
5U22 UZZ 0 0 2 0 5 2
Principle of virtual work 6w =oWl+sW? =0 vsa gives
Suy, )" 12E_3I 6E_2I u m 0 Ui
éW:—{ zz}( 2 L {zz}+ ; {“22}):0 :
56y 5 6El 4El[(&2] [0 mL/5]|&2
2 L
12E—3|, 6E—2I ! m 0 i
L L {22}+ mL2 {..22}:0. €
6EL LEl|(&2) |0 —|l&2
2 5}
L L

The angular speeds @, and @, of free vibrations can be obtained (as square roots of the eigenvalues)
from the eigenvalue decomposition 02 = MK = Xo?X 1 . Let us start with

m o ¢ 12E—3' 6E—2| 12—E'3 6—E'2

Q° =M K= u's é_l ||§| - mELl mIE_I '
0 5] |6 4—| |30—5 20—
L L mL mL

and continue with the characteristic equation

det(Q? - A1) = (12E—'3—1)(20E—'3—1) —180—E|2 —EI4 =0
mL mL mL® mL



giving the eigenvalue solutions

El El
=2—— and =30—;.
A mL3 & mL3

Finally, the angular speeds are square roots of the eigenvalues

El El
ah:\/Z:\/E E and 0)2:\/1—:\/% — €«

mL3 '



Node 4 of a thin rectangular slab (assume plane stress con-
ditions) is allowed to move horizontally and nodes 1, 2, and
3 are fixed. Derive the initial value problem giving as its so-
lution the horizontal displacement uy 4 (t) of node 4 as func- L
tion of time, if uy4(0)=U and uy4(0)=0. Use just one
bilinear element. Material parameters E, v=0, p and v
thickness h of the slab are constants.

Solution
Let us use the xy —coordinate system of the figure as the material coordinate system for the thin slab
element 1. Only the shape function of node 4 is needed in the approximations:

Xy ou 1ly ou x1

u=—-=u —=—=Uyy, —=—-—U ti=2Yty, and v=0
LL ** ax LL * ey LL X T L '

When the approximations are substituted there, virtual work densities of internal and inertia forces
simplify to (here v=0)

T
y
L—y25ux4 2 0 o))z
int hE hE, > 1 >
oW =— 0 - 0 20 0 =—6Ux qux g4 — (Y +EX ),
X 0 0 1||«x L
—5OUxy —Uxa

T . Xy .. Xy

: ou U OUy g —= Uya—— . h

SWHE :—{5\/} hp{v}Z— XA LY hpd X4 =—5Ux4ux4L_fX2y2-
0 0

Virtual work expressions are obtained by integrating the densities over the domain occupied by the
element

. L L .
é\N'”tzjo .[0 5W5“dydx=—5ux4ux4h7E,

i L (L i .1 2
é\Nme = .[O .[O 5W5|edXdy = —5UX 4Ux 4 §hp|_ .
Virtual work expression is the sum of the terms
SW = WMt 4 swine =—5ux4(h7EuX4 +éhpL21'jX4).

Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus
Sa'F=0Vsa < F =0 imply the ordinary differential equation



hE 1 2.
— Uy +—=hplliy,=0.
5 X4 9 PL Ux 4

Initial value problem consists of the second order ordinary differential equation above and additional

conditionsat t =0

Ux4+giUx4=0 t>0 and Ux4=U, Ux4=0 at t=0. €«
2|_2p



The beam of the figure is subjected to moment M when t < 0.
At t =0, the moment is suddenly removed and the beam starts
to vibrate. Derive the initial value problem giving &,,(t) for
t > 0. The beam is thin so that the rotational part of the inertia
term is negligible. The geometrical quantities of the cross-sec-
tion are A, | and the material constants E and p.

Solution

Virtual work expression consists of parts coming from internal

and inertial forces. Finding the equation of motion is the first thing to do. The beam element contri-
butions needed in the problem are (the term having to do with rotational inertia is omitted)

0 T [ 12 6L -12 -6L] 0
: 0 El|-6L 42 6L 2L21|| 0 El
é\Nlnt:_ = :_5 4_ ’
o (3]-12 6L 12 6L || O Grad
56 6L 2L 6L 4% |l&2
017 (156 —22L 54 13L|( @
: 0 22l 412 -13L -3L%]] 0 3 .
PYL pAL 58, 224,
0 420 | 54 —13L 156 22L |] © 105
56 131 312 221 41 |l&e
giving
El pAL .
W =—56,,(4—8 + .
A2 ( C &2 105 & 2)

In terms of moment P(t) (positive in the positive direction of Y-axis) which is piecewise constant in
time so that P(t)=M t<0 and P(t)=0 t >0, the element contribution of the moment is

SW2=56,,P.
Virtual work expression is the sum of element contributions:

AL .
,0105 42-P)=0.

éW:éW1+éW2:—56\(2(4%6\(2+

Principle of virtual work and the fundamental lemma of variation calculus imply the ordinary differ-
ential equation

El AL ..
W = -6, ,(4—B» +Lo— Gy —-P)=0 V8,
L 105
+El g, +pA"36§( ~p=0. €
L 27 105 2 7



When t <0, external moment P =M is acting on node 2 and the system is at rest. Therefore, the
equation of motion becomes an equilibrium equation giving as its solution the initial rotation

When t >0, external moment is zero and acceleration does not vanish. The initial value problem
giving as its solution &,,(t) for t >0 takes the form

pAL . 1 ML :
=0 t>0, 0)=——, and 0)=0. €
105 & 2 >0, 6&7(0) 2Bl &2 (0)

El
4218, +
L & 2



Node 1 of a thin rectangular slab (assume plane stress con-
ditions) is allowed to move horizontally at node 1 whereas A
nodes 2, 3 and 4 are fixed. Derive the expression of horizon-
tal displacement uy,(t) of node 1 as function of time, if
Uyx1(0)=U and uy4(0)=0. Use two linear triangle ele-
ments. Material parameters E, v, p and thickness h of the
slab are constants.

Solution
Let us use the xy —coordinate system of the figure as the material coordinate system for the thin slab
elements 1 and 2. Only the displacement uy(t) of node 1 in the X — direction matters.

Shape functions of element 1 can be deduced from the figure. However, only the shape function
N, =1-y/L is needed as the other nodes are fixed. Approximations to the in-plane displacement
components are v=0 and

When the approximations above are substituted there, virtual work densities of internal and inertia
forces simplify to

T

0 1 v 0 0 hE
5Wmt =— 0 > v 1 0 0 :—5Ux12—Ux1,
S 1-v 2L (1+v)
— Ux1/L 0 0 (1—V)/2 —Ux1/L

T
Swite 2_{5Ux1(10— yl L)} hp{u“(l; y/L)

} = —5Ux1(1—%)2hpux1-

Integration over the domain occupied by the element gives the virtual work expression. The limits of
the double integral over a triangle are not constants (equation of the tilted edge is y = x)

L oL, :
élejO jx (Swiot + Swhe)dydx =

L hE

W= [ [ouy —e
J *o12(14v)

L X .
. Ux1(L=%) == Suxg (1= hptix gl =

h E 2.
OWL = —SUy; — (B——Uy 4 +pLA4i )
x112( 1, uxate x1)

In the same manner, shape functions of element 2 can be deduced from the figure. Only N; =1-x/L
IS needed as the other nodes are fixed. Approximations to the in-plane displacement components are
v=0 and



U—(l——)Ux]_ = @=0, a—u:—lux:]_, and U:(l—E)UXl

oy OX L

When the approximations are substituted there, virtual work densities of internal and inertia forces
simplify to

—5Ux1/|_ T 1 v 0 —Ux1/L hE
5Wmt =— 0 > v 1 0 0 =—5Ux1ﬁUx1,
0 =0 0 a-vyr2|| o Ld-v7)
T .
; @-x/L)ou @—x/L)u X .
5W$e=—{ 0 Xt hp 0 Xt =—5Ux1(1—t)2hpux1-

Integration over the domain occupied by the element gives the virtual work expression (notice the
limits of the double integral and the order of the integrations)

(§Wmt |ne)dydx —
=0y Iy

L hE

1 X2, ..
SW2 = —OUy 1 ——————Uy 1 X——OUy 1 (1——)hpliyx]JdX =
Io [-ouxa a2 T x1(d=) ety x]

h E .
oW? = _5UX1E(6WUX1 + pLiiyy).

Virtual work expression of a structure is sum over the element contributions

E h
SW =Wt +sW?2 =—su —3—u +pL2ly ;) - du 6
x112( x1+tpLlyq) - x112( .2

2.
Uyx1+pLlolixy) <

oW =

Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus
Sa'F=0Vsa < F=0imply

3-v
1—1/2

33-v E
21v,oL2

3EUy +2pL2ly; =0 or (yg+Q2Uy;=0 inwhich Q2=

What remains, is solving for the displacement from the ordinary differential equation above for t >0
and the initial conditions uy;(0)=U and uy;(0)=0. Solution to equations is (this can be shown,
e.g., by substituting the solution in the equations above)

ux1(t):Ucos(§3_V2i2t t>0. €
21-v* pL




Bars 1 and 3 of the structure shown are massless and bar 2 is rigid.
Force F is acting on node 2. Determine the displacement u, (t)
of node 2 for t > 0, if the force is removed at t =0. Young’s mod-
ulus of bars 1 and 3 is E and density of bar 2 is p. Cross-sectional
area is constant A.

Solution

Only the displacement of nodes 2 and 3 in the Z-direction matter. As bar 2 is known to be rigid,
vertical displacements of nodes 2 and 3 coincide i.e. uz, =uz3. Bar element contributions of the
formulae collection are

T T ..
5\/\/"“ __ Suy E 1 -1ifuyg and é\Nine __ Suy pAh|2 1 |fUy
§UX2 h|l-1 1 uX2 §UX2 6 1 2 UXZ .
From the figure, the nodal displacement and length of bar 1 are u,; =0, u,, = Uz, /2 and h=+/2L
. As the bar is assumed to be massless, inertia term vanishes and

L [sug)TEA[T —1](uy 01" eal1 -1](0
W™ = — — == = —0Uzp —==Uz7.
Sup| hl-1 1 ||uy Suzy | BLI-1 1 ||uz, f
The relationships for bar 2 are u,y =uz,, Uy, =Uz, and h= L. As the axial displacements coincide,
internal part vanishes and

T ’ T .
ou 2 1] ou 2 1](u
ow? =)ol pA S pAL 2 =—pALSUy,liz.
§UX2 6 1 2 Uyo 5U22 6 1 2 Uzo
The relationships for bar 3 are uy; =0, Uyy =—Uz,/+/2 and h=+/2L . As the bar is assumed to be
massless

s [oug) EA[1 -1][uy 0 1T EA[L1 -1]( ©
OW?® =— — =— — =—0Uzp—=—Uz>.
Sup| hl-1 1 ||ug —Suzy | ~BLI-1 1 ||-uz, J‘
Point force P(t) acting on node 2 is piecewise constant in time so that P(t)=F t<0 and P(t)=0
t>0. Virtual work expression is
SW* =5u5,P .

Virtual work expression of the structure is the sum of element contributions

SW = WL+ W2 1+ W3 +6W 4 = —5U » (2t + pALiiy — P).

JaL



Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus
Sa'F=0Vda < F=0 imply that

%UZZ +pALUZZ -P=0.

When t<0, uz, does not depend on time and therefore t;, =u;, =0. As the second derivative
vanishes and P = F , the ordinary differential equation simplifies to an algebraic one giving

Uzz—F 0 < u22=%F when t<0.

\/_L

When t >0, P =0 and the initial value problem for the displacement becomes (notice that the initial
conditions are taken from the solution for t<0)

%uzz+pALuzz—0 t>0, uzz(O)—%F and Uy,(0)=0.

Solution to the equations is given by

Uzo(t) = Fﬂcos(— t>0. €

fp)



A plate is simply supported on two edges and free on the
other two edges as shown. Use the approximation
w(x, y,t) =a(t)xy/L® to determine the transverse dis-
placement as function of time t >0. Material properties
E, v, and p are constants and thickness of the plate is h
. At t=0, initial conditions are Ww(x,y,0)=0 and
w(x,y,0) =Uxy/ L. Assume that the plate is thin so that
the rotation part of the inertia term is negligible.

Solution

Only the bending mode of the plate matters. When the approximation w=a(t)xy/ L? is substituted
there, virtual work densities of internal and inertia forces (without the rotation part) of the plate sim-
plify to (shear modulus G=E/(2+2v))

.
025w/ ox? , 1 v o0 0%w/ ox? ,
swilt =1 526w/ oy? ;'—2 E2 v 1 0 0°w / oy> =—5a%h?Ga,
1-v
20%5W 1 X3y 0 0 (@-v)/2]|26%w/oxoy

T .3 ..
; 0ow [ ox OW / Ox
Swie = B M X st = —5a(2)2(X)2hpa
oowloy| 12° |ow/oy L~ L
in which h is thickness of the plate. Integration over the domain occupied by the element gives the
virtual work expressions

int _ L L int _ L L 1 h3 B 1 h3
oW =]y fy owadydx=[i |, To% g Cadv= Ao,

ine (L L ine bt X2, Vo, . __L_2 )
oW _.[0 .[0 WG dydx_IO .[0 5a(I) (I) hpéddxdy = -oa 5 hpd.

Virtual work expression of the structure consists of the internal and inertia parts

int ext 1 h? L2
OW =0W " + W™ =—-da(——Ga+—hpd).
12 3 9

Principle of virtual work oW =0 Voa and the fundamental lemma of variation calculus
Sa'F=0Vsda < F=0imply

1 h3 |2
=1 Gat+—hpa=0.
23 9 ¥

What remains, is solving for the displacement from the initial value problem

. . Gh? .
a+3—4a:0 t>0, a(0)=U, a(0)=0.
pL



Solution to equations is (this can be shown e.g. by substituting the solution in the equations above)

a(t) =U cos( 32120 t>0.
pL

Finally, substituting the solution to parameter a(t) into the approximation gives

G h

W(x, y,t) =U cos(,[3— 1) 3. €
p L2 L



