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Feshbach resonances are the essential tool to control the interaction between atoms in ultracold
quantum gases. They have found numerous experimental applications, opening up the way to
important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in
ultracold gases and their main applications. This includes the theoretical background and models for
the description of Feshbach resonances, the experimental methods to find and characterize the
resonances, a discussion of the main properties of resonances in various atomic species and mixed
atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates,
degenerate Fermi gases, and ultracold molecules.
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I. INTRODUCTION

A. Ultracold gases and Feshbach resonances: Scope of the
review

The impact of ultracold atomic and molecular quan-
tum gases on present-day physics is linked to the ex-
traordinary degree of control that such systems offer to
investigate the fundamental behavior of quantum matter
under various conditions. The interest goes beyond
atomic and molecular physics, reaching far into other
fields, such as condensed matter and few- and many-
body physics. In all these applications, Feshbach reso-
nances represent the essential tool to control the inter-
action between the atoms, which has been the key to
many breakthroughs.

Ultracold gases are generally produced by laser cool-
ing (Metcalf and van der Straten, 1999) and subsequent
evaporative cooling (Ketterle and van Druten, 1997). At
temperatures in the nanokelvin range and typical num-
ber densities somewhere between 10'2 and 10" cm3,
quantum-degenerate states of matter are formed when
the atomic de Broglie wavelength exceeds the typical
interparticle distance and quantum statistics governs the
behavior of the system. The attainment of Bose-Einstein
condensation (BEC) in dilute ultracold gases marked the
starting point of a new era in physics (Anderson et al.,
1995; Bradley et al., 1995; Davis et al., 1995), and degen-
erate atomic Fermi gases entered the stage a few years
later (DeMarco et al., 1999; Schreck et al., 2001; Truscott
et al., 2001). The developments of the techniques to cool
and trap atoms by laser light were recognized with the
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1997 Nobel prize in physics (Chu, 1998; Cohen-
Tannoudji, 1998; Phillips, 1998). Only four years later,
the achievement of BEC in dilute gases of alkali atoms
and early fundamental studies of the properties of the
condensates led to the 2001 Nobel prize (Cornell and
Wieman, 2002; Ketterle, 2002).1

In this review, we give a broad coverage of Feshbach
resonances in view of the manifold applications they
have found in ultracold gases. Regarding theory, we fo-
cus on the underlying two-body physics and on models
to describe Feshbach resonances. In the experimental
part, we include applications to few- and many-body
physics; we discuss typical or representative results in-
stead of the impossible attempt to exhaustively review
all developments in this rapidly growing field. Several
aspects of Feshbach resonances and related topics have
already been reviewed elsewhere. An early review on
Feshbach resonance theory was given by Timmermans
et al. (1999). In another theoretical review, Duine and
Stoof (2004) focused on atom-molecule coherence. Hut-
son and Soldédn (2006) and Kohler et al. (2006) reviewed
the formation of ultracold molecules near Feshbach
resonances. The closely related topic of photoassocia-
tion was reviewed by Jones er al. (2006).

In Sec. I1, we start with a presentation of the theoret-
ical background. Then, in Sec. III, we present the vari-
ous experimental methods to identify and characterize
Feshbach resonances. There we also discuss the specific
interaction properties of different atomic species, which
can exhibit vastly different behaviors. In Sec. TV, we
present important applications of interaction control in
experiments on atomic Bose and Fermi gases. In Sec. V,
we discuss properties and applications of ultracold mol-
ecules created via Feshbach association. Finally, in Sec.
VI, we discuss some related topics, such as optical Fes-
hbach resonances, interaction control in optical lattices,
few-body physics, and the relation to molecular scatter-
ing resonances and cold chemistry.

B. Basic physics of a Feshbach resonance

The physical origin and the elementary properties of a
Feshbach resonance can be understood from a simple
picture. Here we outline the basic ideas, whereas in Sec.
IT we provide a more detailed theoretical discussion.

We consider two molecular potential curves Vi,(R)
and V.(R), as shown in Fig. 1. For large internuclear
distances R, the background potential V},(R) asymptoti-
cally connects to two free atoms in the ultracold gas. For
a collision process, having small energy FE, this potential
represents the energetically open channel, in the follow-

'For overviews on laser cooling and trapping, BEC, and ul-
tracold Fermi gases see the proceedings of the Varenna sum-
mer schools in 1991, 1998, and 2006 (Arimondo et al., 1992;
Inguscio et al., 1999, 2008). For reviews on the theory of de-
generate quantum gases of bosons and fermions see Dalfovo
et al. (1999) and Giorgini ef al. (2008), respectively, and Strin-
gari and Pitaevskii (2003) and Pethick and Smith (2008).
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FIG. 1. (Color online) Basic two-channel model for a Fesh-
bach resonance. The phenomenon occurs when two atoms col-
liding at energy E in the entrance channel resonantly couple to
a molecular bound state with energy E. supported by the
closed channel potential. In the ultracold domain, collisions
take place near zero energy, E— 0. Resonant coupling is then
conveniently realized by magnetically tuning £ near 0 if the
magnetic moments of the closed and open channels differ.

ing referred to as the entrance channel. The other po-
tential V.(R), representing the closed channel, is impor-
tant as it can support bound molecular states near the
threshold of the open channel.

A Feshbach resonance occurs when the bound mo-
lecular state in the closed channel energetically ap-
proaches the scattering state in the open channel. Then
even weak coupling can lead to strong mixing between
the two channels. The energy difference can be con-
trolled via a magnetic field when the corresponding
magnetic moments are different. This leads to a mag-
netically tuned Feshbach resonance. The magnetic tun-
ing method is the common way to achieve resonant cou-
pling and it has found numerous applications, as
discussed in this review. Alternatively, resonant coupling
can be achieved by optical methods, leading to optical
Feshbach resonances with many conceptual similarities
to the magnetically tuned case (see Sec. VI.A). Such
resonances are promising for cases where magnetically
tunable resonances are absent.

A magnetically tuned Feshbach resonance can be de-
scribed by a simple expression,2 introduced by Moerdijk
et al. (1995), for the s-wave scattering length a as a func-
tion of the magnetic field B,

A
o) i

Figure 2(a) shows this resonance expression. The back-
ground scattering length ay,, which is the scattering
length associated with V,,(R), represents the off-
resonant value. It is directly related to the energy of the
last-bound vibrational level of Vi,,(R). The parameter B,
denotes the resonance position, where the scattering

a(B) = abg(l -

*This simple expression applies to resonances without inelas-
tic two-body channels. Some Feshbach resonances, especially
the optical ones, feature two-body decay. For a more general
discussion including inelastic decay see Sec. II.A.3.
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FIG. 2. (Color online) Feshbach resonance properties. (a)
Scattering length a and (b) molecular state energy E near a
magnetically tuned Feshbach resonance. The binding energy is
defined to be positive, E,=—FE. The inset shows the universal
regime near the point of resonance where a is very large and
positive.

length diverges (a— =), and the parameter A is the
resonance width. Note that both a;,, and A can be posi-
tive or negative. An important point is the zero crossing
of the scattering length associated with a Feshbach reso-
nance; it occurs at a magnetic field B=B,+A. Note also
that we use G as the magnetic field unit in this paper
because of its near-universal usage among groups work-
ing in this field, 1 G=10"*T.

The energy of the weakly bound molecular state near
the resonance position By, is shown in Fig. 2(b) relative
to the threshold of two free atoms with zero kinetic en-
ergy. The energy approaches threshold at £=0 on the
side of the resonance where a is large and positive.
Away from resonance, the energy varies linearly with B
with a slope given by du, the difference in magnetic mo-
ments of the open and closed channels. Near resonance
the coupling between the two channels mixes in
entrance-channel contributions and strongly bends the
molecular state.

In the vicinity of the resonance position at B, where
the two channels are strongly coupled, the scattering
length is very large. For large positive values of a, a
“dressed” molecular state exists with a binding energy
given by

E, =h*R2ua’, )

where u is the reduced mass of the atom pair. In this
limit £, depends quadratically on the magnetic detuning
B-Bj and results in the bend shown in the inset of Fig.
2. This region is of particular interest because of its uni-
versal properties; here the state can be described in
terms of a single effective molecular potential having
scattering length a. In this case, the wave function for
the relative atomic motion is a quantum halo state which
extends to a large size on the order of a; the molecule is
then called a halo dimer (see Sec. V.B.2).
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FIG. 3. Observation of a magnetically tuned Feshbach reso-
nance in an optically trapped BEC of Na atoms. The upper
panel shows a strong loss of atoms near the resonance, which is
due to enhanced three-body recombination. The lower panel
shows the dispersive shape of the scattering length a near the
resonance, as determined from measurements of the mean-
field interaction by expansion of the condensate after release
from the trap; here a is normalized to the background value
ay,. From Inouye et al., 1998.

A useful distinction can be made between resonances
that exist in various systems (see Sec. IL.B.2). For narrow
resonances with a width A typically well below 1 G (see
the Appendix) the universal range persists only for a
very small fraction of the width. In contrast, broad reso-
nances with a width typically much larger than 1 G tend
to have a large universal range extending over a consid-
erable fraction of the width. The first class of resonances
is referred to as closed-channel dominated resonances,
whereas the second class is called entrance-channel
dominated resonances. For the distinction between both
classes, the width A is not the only relevant parameter.
Also the background scattering length ayp, and the differ-
ential magnetic moment Su need to be taken into ac-
count. Section I1.B.2 discusses this important distinction
in terms of a dimensionless resonance strength.

Figure 3 shows the observation of a Feshbach reso-
nance as reported by Inouye et al. (1998) for an optically
trapped BEC of Na atoms. This early example highlights
the two most striking features of a Feshbach resonance,
the tunability of the scattering length according to Eq.
(1) and the fast loss of atoms in the resonance region.
The latter can be attributed to strongly enhanced three-
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body recombination and molecule formation near a Fes-
hbach resonance (see Sec. II1.A.2).

A Feshbach resonance in an ultracold atomic gas can
serve as a gateway into the molecular world and is thus
strongly connected to the field of ultracold molecules
(see Sec. V). Various techniques have been developed to
associate molecules near Feshbach resonances. Ultra-
cold molecules produced in this way are commonly re-
ferred to as Feshbach molecules. The meaning of this
term is not precisely defined, as Feshbach molecules can
be transferred to many other states near threshold or to
much more deeply bound states, thus being converted to
more conventional molecules. We use the term Fesh-
bach molecule for any molecule that exists near the
threshold in an energy range set by the quantum of en-
ergy for near-threshold vibrations. The universal halo
state is a special very weakly bound case of a Feshbach
molecule.

C. Historical remarks

Early investigations on phenomena arising from the
coupling of a bound state to the continuum go back to
the 1930s. Rice (1933) considered how a bound state
predissociates into a continuum, Fano (1935) and Fano
et al. (2005) described asymmetric line shapes occurring
in such a situation as a result of quantum interference,
and Beutler (1935) reported on the observation of highly
asymmetric line shapes in rare gas photoionization spec-
tra. Nuclear physicists considered basically the same
situation, having nuclear scattering experiments in mind
instead of atomic physics. Breit and Wigner (1936) con-
sidered the situation in the limit when the bound state
plays a dominant role and the asymmetry disappears.
Later interference and line-shape asymmetry were taken
into account by several authors (Blatt and Weisskopf,
1952).

Feshbach (1917-2000) and Fano (1912-2001) devel-
oped their thorough treatments of the resonance phe-
nomena that arise from the coupling of a discrete state
to the continuum. Their work was carried out indepen-
dently using different theoretical approaches. While Fes-
hbach’s work originated in the context of nuclear physics
(Feshbach, 1958, 1962), Fano approached the problem
on the background of atomic physics (Fano, 1961). refor-
mulating and extending his earlier work (Fano, 1935;
Fano et al., 2005). Nowadays, the term “Feshbach reso-
nance” is most widely used in the literature for the reso-
nance phenomenon itself, but sometimes also the term
“Fano-Feshbach resonance” appears. As a curiosity Fes-
hbach himself considered his name being attached to a
well-known resonance phenomenon as a mere atomic
physics jargon (Kleppner, 2004; Rau, 2005). Fano’s name
is usually associated with the asymmetric line shape of
such a resonance, well known in atomic physics as a
“Fano profile.”

A prominent example for the observation of a Fesh-
bach resonance in atomic physics is the experiment of
Bryant et al. (1977) on photodetachment by the negative
ion of hydrogen. Near a photon energy of 11 eV two
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FIG. 4. (Color online) Number of publications per year (from
1985 to 2008) with Feshbach resonances appearing in the title.
Data from ISI Web of Science.

prominent resonances were seen, one of them being a
Feshbach resonance and the other one a “shape reso-
nance” (see Sec. II.A.3). Many more situations where
Feshbach resonances play an important role can be
found in atomic, molecular, and chemical physics [see
Spence and Noguchi (1975), Gauyacq and Herzenberg
(1982), MacArthur et al. (1985), Nieh and Valentini
(1990), and Weber et al. (1999) for a few examples]. In
such experiments, the resonances occur when the scat-
tering energy is varied. This is in contrast to the experi-
ments on ultracold gases, where scattering takes place in
the zero-energy limit and the resonances occur when an
external field tunes bound states near threshold.

In the context of quantum gases, Feshbach resonances
were first considered by Stwalley (1976), who suggested
the existence of magnetically induced Feshbach reso-
nances in the scattering of spin-polarized hydrogen and
deuterium atoms (H+D and D+D). He pointed to en-
hanced inelastic decay near these resonances and sug-
gested that they should be avoided to maintain stable
spin-polarized hydrogen gases. A related loss resonance
in hydrogen was observed by Reynolds et al. (1986). The
positive aspect of such resonances was first pointed out
by Tiesinga et al. (1993), who showed that they can be
used to change the sign and strength of the interaction
between ultracold atoms. In 1998, the possibility of in-
teraction tuning via Feshbach resonances was demon-
strated by Inouye et al. (1998) for a *’Na BEC, as already
discussed in the preceding section. In the same year,
Courteille et al. (1998) demonstrated a Feshbach reso-
nance in a trapped sample of ®Rb atoms through the
enhancement of photoassociative loss induced by a
probe laser.

The important role of Feshbach resonances in
present-day quantum gas experiments can be high-
lighted by looking at the number of publications per
year with Feshbach resonances in the title (see Fig. 4).
Before 1998, one finds just a few publications with the
majority not related to ultracold atoms. Then, after
1998, a substantial increase is observed as a result of the
first successful experiments with Feshbach resonances in
ultracold gases. It then took a few years until Feshbach
resonances had become a fully established tool and
opened up many new applications in the field. This is
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reflected in the steep increase of the publication rate in
the period from 2002 to 2004.

II. THEORETICAL BACKGROUND

This review primarily concentrates on magnetically
tunable resonances, described in the next sections, while
Sec. VI.A discusses optical changes in scattering lengths.
Here we describe the two-body physics of collision reso-
nances, not the few- or many-body aspects. Properties of
a number of magnetic Feshbach resonances are tabu-
lated in the Appendix.

A. Basic collision physics

The theory for describing two-body collisions is de-
scribed in a number of textbooks (Mott and Massey,
1965; Messiah, 1966; Taylor, 1972). First consider the col-
lision of two structureless atoms, labeled 1 and 2 with
masses m and m, interacting under the influence of the
potential V(R), where R is the vector between the posi-
tions of the two atoms with magnitude R. The separated
atoms are prepared in a plane wave with relative kinetic
energy E=%%k*/(2u) and relative momentum 7%k, where
pu=mym,/(m;+ms,) is the reduced mass of the pair. The
plane wave in turn is expanded in a standard sum over

spherical harmonic functions ng{(li), where € is the
relative angular momentum, m, is its projection along a

space fixed z axis, and R=R/R is the direction vector on
the unit sphere (Messiah, 1966). This expansion is called
the partial wave expansion, and the various partial
waves €=0,1,2,... are designated s,p,d,... waves.

If the potential V(R) is isotropic, depending only on
the magnitude of R, there is no coupling among partial
waves, each of which is described by the solution
Ye(R)=¢¢(R)/R to the Schrédinger equation

72 d* (R

L IV RIB(R) = E (R, ®)
where V((R)=V(R)+h*¢(€+1)/(2uR?) includes the cen-
trifugal potential, which is repulsive for €>0 and van-
ishes for the s wave. We assume V(R)—0 as R—®, so
that E represents the energy of the separated particles.
This equation has a spectrum of N, bound state solu-
tions at discrete energies E,, for E<0 and a continuous
spectrum of scattering states with £>0. While bound
states are normally labeled by vibrational quantum num-
ber v=0,...,N,—1 counting up from the bottom of the
potential, we prefer to label threshold bound states by
quantum number n=-1,-2,... counting down from the
top of the potential for the last, next to last, etc. bound
states. The bound state solutions |n€) are normalized to
unity, [(n€|n€)?=1, and ¢,(R)=(R|nt)—0 as R— .
The scattering solutions, representing the incident plane
wave plus a scattered wave, approach
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sin[kR — m€/2 + 5,(E)]
d(R,E) — c— W& e

ein((E) (4)

as R—o, where 7,(E) is the scattering phase shift
and c=\2u/mh’ is a constant that ensures the wave
function |E€) is normalized per unit energy, (E€¢|E'{)
=[0¢,(R,E)p¢(R,E")YdAR=8E~E'). The scattering
phase shift is the key parameter that incorporates the
effect of the whole potential on the collision event.

Sadeghpour ef al. (2000) reviewed the special proper-
ties of scattering phase shift near a collision threshold
when k—0. If V(R) varies as 1/R* at large R, then
tan 7, k>l if 20+1<s5-2 and tan 7, k* 2 if 20 +1 =5
—2. While Levinson’s theorem shows that 7n,— N,7 as
k—0, we need not consider the N, part of the phase
shift in this review. For van der Waals potentials with s
=6, the threshold tan 7, varies as k and k* for s and p
waves and as k* for all other partial waves. The proper-
ties of s-wave collisions are of primary interest for cold
neutral atom collisions, where near threshold, a more
precise statement of the variation of tan 7, with k is
given by the effective range expansion,

k cot o(E) = — 1/a + 3rgk?, (5)

where a is called the s-wave scattering length and r, is
the effective range. For practical purposes, it often suf-
fices to retain only the scattering length term and use
tan 7y(E)=—ka. Depending on the potential, the scatter-
ing length can have any value, —% <a <+%.

When the scattering length is positive and sufficiently
large, that is, large compared to the characteristic length
scale of the molecular potential (see Sec. I1.B.1), the last
s-wave bound state of the potential, labeled by index n
=-1 and €¢=0, is just below threshold with a binding
energy E,=-FE_; given by Eq. (2) in the Introduction.
The domain of universality, where scattering and bound
state properties are solely characterized by the scatter-
ing length and mass, is discussed in recent reviews
(Braaten and Hammer, 2006; Kohler et al., 2006). The
universal bound state wave function takes on the form
d_10(R)= 2/a exp(—R/a) at large R. Such a state exists
almost entirely at long range beyond the outer classical
turning point of the potential. Such a bound state is
known as a “halo state,” also studied in nuclear physics
(Riisager, 1994) and discussed in Sec. V.B.2.

1. Collision channels

The atoms used in cold collision experiments gener-
ally have spin structure. For each atom i=1 or 2 in a
collision the electronic orbital angular momentum L; is
coupled to the total electronic spin angular momentum
S; to give a resultant j;, which in turn is coupled to the
nuclear spin I; to give the total angular momentum f;.
The eigenstates of each atom are designated by the com-
posite labels g;. At zero magnetic field these labels are
fim;, where m; is the projection of f;. For example, alkali-
metal atoms that are commonly used in Feshbach reso-
nance experiments have %S, electronic ground states

Rev. Mod. Phys., Vol. 82, No. 2, April-June 2010

Zeeman Energy E/h (GHz)

S
~
T

1/2\
1

L 1 L 1 L 1 L h
0 100 200 300 400 500
B (Gauss)

FIG. 5. (Color online) Atomic energy levels of the °Li atom,
which has §=1/2, I=1, and f=1/2 and 3/2. The figure shows
both the projection m of f and the alphabetical shorthand no-
tation ¢;=a, b, ¢, d, e, and f used to label the levels in order of
increasing energy.

with quantum numbers ;=0 and §;=1/2, for which
there are only two values of f;=1;—1/2 and I;+1/2 when
I;#0. Whether f; is an integer or half an odd integer
determines whether the atom is a composite boson or
fermion.

A magnetic field B splits these levels into a manifold
of Zeeman sublevels. Only the projection m; along the
field remains a good quantum number, and B=0 levels
with the same m; but different f; can be mixed by the
field. Even at high field, where the individual f; values no
longer represent good quantum numbers, the f; value
still can be retained as a label, indicating the value at
B =0 with which the level adiabatically correlates.

Figure 5 shows the Zeeman energy levels versus B for
the °Li atom, a fermion, according to the classic Breit-
Rabi formula (Breit and Rabi, 1931). The two f; levels
are split at B=0 by the hyperfine energy, E/h
=228 MHz. At large fields the lower group of three lev-
els is associated with the quantum number mg=-1/2,
while the upper group has mg=+1/2. The figure also
shows our standard notation for atomic Zeeman levels
for any species and any field strength. We label states by
lower case Roman letters a, b, c,... in order of increasing
energy. Some prefer to label the levels in order numeri-
cally as 1, 2, 3... . The notation g; can symbolically refer
to the fym;, alphabetical, or numerical choice of labeling

The collision event between two atoms is defined by
preparing the atoms in states ¢; and g, while they are
separated by a large distance R, then allowing them to
come together, interact, and afterward separate to two
atoms in states g and g}. If the two final states are the
same as the initial ones, ¢;,9,=¢1,q5, the collision is
said to be elastic, and the atoms have the same relative
kinetic energy E before and after the collision. If one of
the final states is different from an initial state, the col-
lision is said to be inelastic. This often results in an en-
ergy release that causes a loss of cold atoms when the
energetic atoms escape from the shallow trapping poten-
tial. We concentrate primarily on collisions where the
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two-body inelastic collision rate is zero or else very small
in comparison to the elastic rate since this corresponds
in practice to most cases of practical experimental inter-
est. This condition is necessary for efficient evaporative
cooling or to prevent rapid decay of the cold gas. Section
II1.A.2 discusses how atom loss due to three-body colli-
sions can be used to detect the presence of two-body
resonances.

In setting up the theory for the collision of two atoms,
the scattering channels are defined by the internal states
of the two atoms 1 and 2 and the partial wave, |a)

=|q1q2)|€m), where (I%|€me>:Y{me(ﬁ). Since for colli-
sions in a magnetic field the quantum number M=my
+m,+my is strictly conserved, a scattering channel can
be conveniently labeled by specifying the set of quantum
numbers {q;q,M}. For s waves, where ¢=m,=0 and
M=m,+m,, it is only necessary to specify the quantum
numbers {g,q,} to label a channel.

When the two atoms are of the same isotopic species,
the wave function must be symmetric (antisymmetric)
with respect to exchange of identical bosons (fermions).
We assume such symmetrized and normalized functions
as described by Stoof er al. (1988). Exchange symmetry
ensures that identical atoms in identical spin states can
only collide in s,d,... waves for the case of bosons and
in p.f,... waves in the case of fermions; in all other
cases, collisions in all partial waves are allowed.

The channel energy E,=E(q;)+E(q,) is the internal
energy of the separated atoms. Assume that the atoms
are prepared in channel « with relative kinetic energy E
so that the total energy is E.=FE,+E. Any channel B
with Eg=< E\, is called an open channel and any channel
with Ez> E is called a closed channel. A collision can
produce atoms in an open channel after the collision,
but not in a closed channel, since the atoms do not have
enough energy to separate to the product atoms.

2. Collision rates

The partial collision cross section for starting in open
channel « with relative kinetic energy E and ending in
open channel 3 can be expressed in terms of the S, 5(E)
element of the multichannel unitary scattering matrix S.
The cross section for elastic scattering at energy E in
channel «a is

(Tel,oz(E) = ga(ﬂ/k2)|1 - Sa,a(E)|2, (6)

whereas the unitarity property of S allows us to express
the cross section for loss of atoms from channel « as

Tloss. ol E) = 8ok 1 =[S 4 o E)]. (7)

The corresponding partial elastic and inelastic rate coef-
ficients K ,(E) and K o(E) are found by multiplying
these partial cross sections by the relative collision ve-
locity v=nk/u. The factor g,=1 except for certain spe-
cial cases involving identical particles. The factor g,=2
for describing thermalization or inelastic collisions in a
normal Maxwellian gas of two atoms of the same species
in identical spin states. Inelastic decay of a pure Bose-
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Einstein condensate has g,=1 (Kagan et al., 1985; Stoof
et al., 1989).

If only one open channel « is present, collisions are
purely elastic and S, ,(E)=exp[2i7,(E)]. For s waves the
real-valued tan 7,(F)— —ka, as k—0 and a,, is the scat-
tering length for channel a. When other open channels
are present, the amplitude |S,,(E)| is no longer unity,
and for s wave we can represent the complex phase
n{E)——ka, for k—0 in terms of a complex scattering
length (Bohn and Julienne, 1996; Balakrishnan et al.,
1997)

a,=a

a a_iba’ (8)

where a and b are real, and 1-|S, (E)]?—4kb,=0 as
k—0. The threshold behavior is

0ot E) = 47g (@, + b7) )
for the s-wave elastic collision cross section and
Kloss‘a(E) = (Zh/ﬂ)gaba (10)

for inelastic collisions that remove atoms from channel
a. Both o, and K , approach constant values when
E is sufficiently small.

The unitarity property of the S matrix also sets an
upper bound on the cross sections. Since there is a rig-
orous upper bound of |S, ,(E)|<1, we find that the elas-
tic scattering cross section is maximum,

O-el,a(E) = (47T/k2)ga/7 (11)

for any channel a (and thus any partial wave €) when
S .o(E)=—1. Furthermore, 0y, ,(E), if nonvanishing, has
a maximum value of oy, (E)=g,m/k* when S, ,(E)=0.
These limits are called the unitarity limits of the cross
sections. For s-wave collisions this limit is approached at
quite low energy given by E~#?/ (Z,Ma%l), where ka,~1.

In order to compare with experimental data the par-
tial rate coefficients must be summed over partial waves
and thermally averaged over the distribution of relative
collision velocities at temperature 7. This defines the
total rate coefficients Kel.qlqz(T) and Kloss,qlqz(T) when
the atoms are prepared in states g, and ¢,, respectively.
Often the temperatures are sufficiently small that only
the s-wave entrance channel contributes.

3. Resonance scattering

The idea of resonance scattering in atomic and mo-
lecular systems has been around since the earliest days
of quantum physics, as described in the Introduction. A
conventional “resonance” occurs when the phase shift
changes rapidly by = over a relatively narrow range of
energy due to the presence of a quasibound level of the
system that is coupled to the scattering state of the col-
liding atoms. Such a resonance may be due to a quasi-
bound level trapped behind a repulsive barrier of a
single potential or may be due to some approximate
bound state which has a different symmetry and poten-
tial from that of the colliding atoms. The former is com-
monly known as a shape resonance, whereas the latter is
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often called a Feshbach resonance, in honor of Herman
Feshbach, who developed a theory and a classification
scheme for resonance scattering phenomena in the con-
text of nuclear physics (Feshbach, 1958, 1962). We will
follow here Fano’s configuration interaction treatment
of resonant scattering (Fano, 1961), which is common in
atomic physics. A variety of treatments of the two-body
physics of resonances in the context of ultracold Bose
gases has been given by Timmermans et al. (1999), Duine
and Stoof (2004), Goral et al. (2004), Marcelis et al.
(2004), and Raoult and Mies (2004).

We first consider the standard scattering picture away
from any collision threshold defined by a two-channel
Hamiltonian H. Assume that we can describe our sys-
tem to a good approximation by two uncoupled “bare”
channels, as schematically shown in Fig. 1. One is the
open background scattering channel [bg) with scattering
states |E)=n (R, E)|bg) labeled by their collision en-
ergy E. The other is the closed channel |c) supporting a
bound state |C)=¢.(R)|c) with eigenenergy E,. The
functions ¢.(R) and ¢,(R,E) are the solutions to Eq.
(3) for the background potential Vy,(R) and the closed
channel potential V(R), respectively. Here ¢.(R) is nor-
malized to unity. The scattering in the open channel is
characterized by a background phase shift 7,,(E). When
the Hamiltonian coupling W(R) between the two chan-
nels is taken into account, then the two states become
mixed or dressed by the interaction, and the scattering
phase picks up a resonant part due to the bound state
embedded in the scattering continuum,

WE) = oy E) + s E), (12)

where 7,.(E) takes on the standard Breit-Wigner form
(Mott and Massey, 1965; Taylor, 1972),

1
EF(EC)
E)=—tan!| ————|. 13
melE) = —tan”!| (13)
The interaction W(R), which vanishes at large R, deter-

mines two key features of the resonance, namely, its
width,

I(E) =27 CIW(R)|E), (14)
and its shift SE to a new position at E.+ SE(E),

" KEWRIEP

E' 1
E_E, d > ( 5)

SE(E)=TP J

—0

where P implies a principal part integral, which includes
a sum over the contribution from any discrete bound
states in the spectrum of the background channel. When
the resonance energy is not near the channel threshold,
it is normally an excellent approximation to take the
width and shift as energy-independent constants, I'(E,)
and SE(E,), evaluated at the resonance energy E,, as in
Eq. (13). The resonance phase changes by =~ when E
varies over a range on the order of I" from below to
above resonance.
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The essential difference between conventional and
threshold resonance scattering is that if £, is close to the
open channel threshold at £=0, the explicit energy de-
pendence of the width and shift become crucial (Bohn
and Julienne, 1999; Marcelis et al., 2004; Julienne and
Gao, 2006),

—I'(E)

— fr | [ —
”res(E)— tan E-E.- SE(E) . (16)

The threshold laws for the s-wave width and shift as k
—0 are

ST(E) — (kayy)T, (17)

E.+ SE(E) — E,, (18)

where I'y and E; are E-independent constants. Since
I'(E) is positive definite, I'y has the same sign as ay,.
Combining these limits with the background phase prop-
erty, 7,(E) — —kay,, and, for the sake of generality, add-
ing a decay rate y/f for the decay of the bound state
into all available loss channels give in the limit of k—0

G=a—ib=ay+ —2E0 (19)

- Tt Eo+i(y2)

The unique role of scattering resonances in the ultra-
cold domain comes from the ability to tune the thresh-
old resonance position E through zero by varying either
an external magnetic field with strength B or optical
field with frequency v.

Both magnetically and optically tunable resonances
are treated by the same theoretical formalism given
above, although the physical mechanisms determining
the coupling and tuning are quite different. In the case
of a magnetically tunable resonance, the channel can of-
ten be chosen so that vy is zero or small enough to be
ignored, whereas optical resonances are always accom-
panied by decay processes y due to decay of the excited
state. The resonance strength I'y is fixed for magnetic
resonances, but ['y(/) for optical resonances can be
turned off and on by varying the laser intensity /. It may
also be possible to gain some control over Iy using a
combination of electric and magnetic fields (Marcelis
et al., 2008).

In the case of a magnetically tunable resonance, there
is a difference Sp= taioms— M DEtween the magnetic mo-
ment f,oms Of the separated atoms and the magnetic
moment g, of the bare bound state |C). Thus, the energy
E. of the state |C) relative to the channel energy of the
separated atoms,

E.=68uwB-B,), (20)

can be tuned by varying the magnetic field, and E. is
zero at a magnetic field equal to B.. Then, given that y
=0, the scattering length takes on the simple form given
in Eq. (1),
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a(B) =abg_abgA/(B_B())a (21)
where
A= F()/&,M and B() = BC + OB (22)

are the width and the position of the singularity in the
scattering length, shifted due to the interaction bet-
ween the closed and open channels by an amount 6B
=-0E/ du. Note that A has the same sign as Su/ayp,. Fig-
ure 2 schematically shows the scattering length near the
point of resonance B,,.

The complex scattering length of an optically tunable
resonance at laser frequency v includes the collisional
loss due to excited state decay (Fedichev, Kagan, et al.,
1996; Bohn and Julienne, 1999),

N an,l'o(1)
Wv—v,— o)) +i(y2)’

where the optically induced width I'y(/) and shift Sv(/)
are linear in /, and v, represents the frequency of the
unshifted optical transition between the excited bound
state and the collisional state of the two atoms at E£=0.
Whenever bound state decay is present, whether for
magnetically or optically tunable resonances, Eq. (19)
shows that resonant control of the scattering length,

a(n,1) = ay, (23)

vEo
a= abg - aresm N (24)
is accompanied by collisional loss given by
¥
b= 75 25
27 B2 1 (y2)? @)
The resonant length parameter
Ores = abgr(}/')’ (26)

is useful for defining the strength of an optical resonance
(Bohn and Julienne, 1997; Ciuryto et al., 2005) or any
other resonance with strong decay (Hutson, 2007). Fig-
ure 6 gives an example of such a resonance. The scatter-
ing length has its maximum variation of ay,*a,. at Ey
=+1v/2, where b=a,,. Resonances with a,.,<|ay,| only
allow relatively small changes in scattering length, yet b
remains large enough that they are typically accompa-
nied by large inelastic rate coefficients. On the other
hand, if a,.> |abg|, losses can be overcome by using large
detuning since the change in scattering length is a—ap,
=—a,.s(y/ Eg) when |Ey|> vy, whereas b/|a—abg|=%|y/EO|
<l1.

The resonance length formalism is quite powerful. By
introducing the idea of an energy-dependent scattering
length (Blume and Greene, 2002; Bolda et al., 2002) it
can be extended to Feshbach resonances in reduced di-
mensional systems such as pancake or cigar-shaped op-
tical lattice cells (Naidon and Julienne, 2006).

While this discussion has concentrated on resonant
scattering properties for £>0, the near-threshold reso-
nant properties of bound Feshbach molecules for energy
E <0 are important aspects of Feshbach physics [see Fig.
2 and Kohler et al. (2006)]. In particular, as the bound
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FIG. 6. (Color online) Scattering length for an optically tun-
able Feshbach resonance as a function of laser tuning v— .
The lengths @ and b are defined in Egs. (24) and (25). Here
apg=5.29 nm, I'y/h=21 MHz at =500 W/cm?, a,e=5.47 nm,
and y/h=20 MHz. Numerical values for the strength and spon-
taneous linewidth of the resonance are typical for ¥’Rb and are
taken from Fig. 1 of Theis et al., 2004.

state becomes more deeply bound, the closed channel
character of the bound state increases and the binding
energy E, is no longer described by the universal ex-
pression in Eq. (2). The dressed or true molecular bound
state of the system with energy —E, is a mixture of
closed and background channel components,

[0,(R)) = VZ$(R)|c) + xog(R)|bE). 27)

where 0=<Z =1 represents the fraction of the eigenstate
[¢,(R)) in the closed channel component (Duine and
Stoof, 2003). Unit normalization of |#,(R)) ensures that
JIxve(R)*dR=1-Z. Since the variation of the energy
—E, with a parameter x of the Hamiltonian satisfies the
Hellman-Feynmann theorem d(—E},)/ dx={,|0H/ ox|4fs,),
it follows from Eq. (27) that

Z =~ Ep)IIE, = Suyl Su. (28)

Here ouy,=0E},! B = paoms— Mp 18 the difference between
the magnetic moment of the separated atoms and the
magnetic moment u; of the dressed molecular eigen-
state. Since Sy, vanishes in the limit B— B, where E,
—0 according to the universality condition in Eq. (2),
then Z vanishes in this limit also. Section II.C.5 develops
more specific properties and conditions for £, and Z in
this limit.

B. Basic molecular physics

Most atoms that can be trapped at ultracold tempera-
tures have ground § states with zero electronic orbital
angular momentum (L=0) as for alkali-metal or
alkaline-earth-metal atoms. The collision between two
atoms is controlled by the electronic Born-Oppenheimer
interaction potential(s) between them. All potentials are
isotropic for the interaction of two S-state atoms. We
restrict our discussion of molecular physics to such cases.
Figure 7 shows as an example the 12; and 32; potentials
for two ground state %S Li atoms, which are analogous to
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FIG. 7. (Color online) Molecular potentials V(R)/h vs R of the
two electronic states of Li, that correlate with two separated
2§ atoms. The inset shows an expanded view of the long-range
s-wave potentials of °Li at B=0, indicating the five hyperfine
states of the separated atoms (see Fig. 5) for which the total
angular momentum has projection M =0. The inset also shows
the last two nearly degenerate bound states (unresolved on the
figure) of the 6L12 molecule from a coupled-channel calcula-
tion. It is a good approximation to label these nearly degener-
ate levels as the /=0 and 2 components of the total nuclear
spin I=I;+I, of the last v=38 vibrational level of the 12; po-
tential.

the similar potentials for the H, molecule or other
alkali-metal atoms. The superscripts 1 and 3 refer to sin-
glet and triplet couplings of the spins of the unpaired
electrons from each atom, i.e., the total electron spin S
=$,+$S, has quantum numbers S=0 and 1. The X refers
to zero projection of electronic angular momentum on
the interatomic axis for the S-state atoms, and g (u) re-
fers to gerade (ungerade) electronic inversion symmetry
with respect to the center of mass of the molecule. The
g (u) symmetry is absent when the two atoms are not of
the same species.

The Born-Oppenheimer potentials are often available
from ab initio or semiempirical sources. When R is suf-
ficiently small, typically less than R.,=1 nm for alkali-
metal atoms, electron exchange and chemical bonding
effects determine the shape of the potentials. For R
> R., the potentials are determined by the long-range
dispersion interaction represented by a sum of second-
order multipolar interaction terms.

1. van der Waals bound states and scattering

Many aspects of ultracold neutral atom interactions
and of Feshbach resonances, in particular, can be under-
stood qualitatively and even quantitatively from the
scattering and bound state properties of the long-range
van der Waals potential. The properties of this potential
relevant for ultracold photoassociation spectroscopy
have been reviewed by Jones er al. (2006). Its analytic
properties are discussed by Mott and Massey (1965),
Gribakin and Flambaum (1993), and Gao (1998b, 2000).

In the case of S-state atoms, the leading term in the
long-range part of all Born-Oppenheimer potentials for
a given atom pair has the same van der Waals potential
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characterized by a single Cq coefficient for the pair. Con-
sequently, all g,g, spin combinations have the long-
range potential

Cs H2LH+1)
"R R
A straightforward consideration of the units in Eq. (29)

suggests that it is useful to define length and energy
scales,

Vi(R) = (29)

1/4 2
h
) and EVdW =5

(30)
2p %dW

RvdW = E 12

Gribakin and Flambaum (1993) defined an alternative
van der Waals length scale which they called the mean
scattering length,

= [4m/T(1/4)*]R g = 0.955 978 ... Roaw, (31)

1 (2Mc6

where I'(x) is the gamma function. A corresponding en-

ergy scale is E=#2/(2ua?)=1.09422... E 4. The param-
eter a occurs frequently in formulas based on the van
der Waals potential. Table I gives the values of Rqw and
E qw for several cases. Values of Cg¢ for other systems
are tabulated by Tang e al. (1976), Derevianko et al.
(1999), and Porsev and Derevianko (2006).

The van der Waals energy and length scales permit a
simple physical interpretation (Julienne and Mies, 1989).
A key property for ultracold collisions is that C4/ RS be-
comes large compared to the collision energy £ when
R <R,qw- Thus, the wave function for any partial wave
oscillates rapidly with R when R <R, 4w since the local
momentum Ak(R)=\2u[E-V(R)] becomes large com-
pared to the asymptotic k. On the other hand, when
R >R, 4w, the wave function approaches its asymptotic
form with oscillations on the scale determined by the
long de Broglie wavelength of the ultracold collision.
The energy scale E, 4w determines the nature of the con-
nection between the long- and short-range forms of the
wave function. The de Broglie wavelength N=27(R,qw)
for E=E 4w. When E<E 4w so that A>R 4w, a WKB
connection cannot be made near R,gw between the
asymptotic s wave and the short-range wave function
[see Fig. 15 of Jones et al. (2006)]. Consequently, the
quantum properties of the collision are manifest for E
<Eyaw-

The van der Waals length also characterizes the extent
of vibrational motion for near-threshold bound state.
The outer turning point for classical motion for all low €
bound states is on the order of R 4w. The wave function
for €=0 oscillates rapidly for R < R,4w and decays expo-
nentially as e ¥R for R> R, gy, where #2k7/(2u) is the
binding energy. The only case where the wave function
extends far beyond R, 4w is that of the last s-wave bound
state for the case of the universal halo molecule, where
a> R, gw (see Secs. ILLA and V.B.2).

The van der Waals potential determines the interac-
tion over a wide zone between R,4w and the much
smaller R,, where chemical forces become important.
Thus, near-threshold bound and scattering state proper-



