MS-C1081 – Abstract Algebra 2022–2023 (Period III) Milo Orlich – Rahinatou Njah

During the exercise sessions you may work on the Warm-up problems, and the TAs will present solutions to those. Submit your solutions to Homework 1,2,3 and to the Fill-in-theblanks problem on MyCourses before the deadline. Remember that the Homeworks and the Fill-in-the-blanks go to separate return boxes, and each return box accepts a single pdf file.

Warm-ups

Warm-up 1. Consider the group $(\mathbb{Z}_2 \times S_3, *)$, where the operation is defined componentwise, that is, for all $\overline{a}, \overline{b} \in \mathbb{Z}_2$ and for all $\sigma, \tau \in S_3$,

$$(\overline{a}, \sigma) * (\overline{b}, \tau) := (\overline{a} + \overline{b}, \tau \circ \sigma).$$

Use the following notation and Cayley table:

	$\mathrm{id} := \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix},$			$\alpha := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$				$\beta := \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix},$				
	$\gamma :=$	$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$	$\binom{3}{2}$,		$\delta := \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$ \begin{array}{cc} 2 & 3 \\ 3 & 1 \end{array} \right), $		ε:=	$ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} $	$\binom{3}{2}$.		
*	$(\overline{0}, \mathrm{id})$	$(\overline{0}, \alpha)$	$(\overline{0},\beta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \delta)$	$(\overline{0}, \varepsilon)$	$(\overline{1}, \mathrm{id})$	$(\overline{1}, \alpha)$	$(\overline{1},\beta)$	$(\overline{1}, \gamma)$	$(\overline{1},\delta)$	$(\overline{1},\varepsilon)$
$(\overline{0}, \mathrm{id})$	$(\overline{0}, \mathrm{id})$	$(\overline{0}, \alpha)$	$(\overline{0},\beta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \delta)$	$(\overline{0},\varepsilon)$	$(\overline{1}, \mathrm{id})$	$(\overline{1}, \alpha)$	$(\overline{1},\beta)$	$(\overline{1}, \gamma)$	$(\overline{1},\delta)$	$(\overline{1},\varepsilon)$
$(\overline{0}, \alpha)$	$(\overline{0}, \alpha)$	$(\overline{0}, \mathrm{id})$	$(\overline{0},\delta)$	$(\overline{0},\varepsilon)$	$(\overline{0},\beta)$	$(\overline{0}, \gamma)$	$(\overline{1}, \alpha)$	$(\overline{1}, \mathrm{id})$	$(\overline{1},\delta)$	$(\overline{1},\varepsilon)$	$(\overline{1},\beta)$	$(\overline{1}, \gamma)$
$(\overline{0},\beta)$	$(\overline{0},\beta)$	$(\overline{0},\varepsilon)$	$(\overline{0}, \mathrm{id})$	$(\overline{0}, \delta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \alpha)$	$(\overline{1},\beta)$	$(\overline{1}, \varepsilon)$	$(\overline{1}, \mathrm{id})$	$(\overline{1},\delta)$	$(\overline{1}, \gamma)$	$(\overline{1}, \alpha)$
$(\overline{0}, \gamma)$	$(\overline{0}, \gamma)$	$(\overline{0}, \delta)$	$(\overline{0},\varepsilon)$	$(\overline{0}, \mathrm{id})$	$(\overline{0}, \alpha)$	$(\overline{0},\beta)$	$(\overline{1}, \gamma)$	$(\overline{1},\delta)$	$(\overline{1},\varepsilon)$	$(\overline{1}, \mathrm{id})$	$(\overline{1}, \alpha)$	$(\overline{1},\beta)$
$(\overline{0}, \delta)$	$(\overline{0},\delta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \alpha)$	$(\overline{0},\beta)$	$(\overline{0},\varepsilon)$	$(\overline{0}, \mathrm{id})$	$(\overline{1},\delta)$	$(\overline{1}, \gamma)$	$(\overline{1}, \alpha)$	$(\overline{1},\beta)$	$(\overline{1},\varepsilon)$	$(\overline{1}, \mathrm{id})$
$(\overline{0},\varepsilon)$	$(\overline{0},\varepsilon)$	$(\overline{0},\beta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \alpha)$	$(\overline{0}, \mathrm{id})$	$(\overline{0},\delta)$	$(\overline{1},\varepsilon)$	$(\overline{1},\beta)$	$(\overline{1}, \gamma)$	$(\overline{1}, \alpha)$	$(\overline{1}, \mathrm{id})$	$(\overline{1},\delta)$
$(\overline{1}, \mathrm{id})$	$(\overline{1}, \mathrm{id})$	$(\overline{1}, \alpha)$	$(\overline{1},\beta)$	$(\overline{1}, \gamma)$	$(\overline{1},\delta)$	$(\overline{1},\varepsilon)$	$(\overline{0}, \mathrm{id})$	$(\overline{0}, \alpha)$	$(\overline{0},\beta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \delta)$	$(\overline{0}, \varepsilon)$
$(\overline{1}, \alpha)$	$(\overline{1}, \alpha)$	$(\overline{1}, \mathrm{id})$	$(\overline{1},\delta)$	$(\overline{1},\varepsilon)$	$(\overline{1},\beta)$	$(\overline{1}, \gamma)$	$(\overline{0}, \alpha)$	$(\overline{0}, \mathrm{id})$	$(\overline{0},\delta)$	$(\overline{0}, \varepsilon)$	$(\overline{0},\beta)$	$(\overline{0}, \gamma)$
$(\overline{1},\beta)$	$(\overline{1},\beta)$	$(\overline{1},\varepsilon)$	$(\overline{1}, \mathrm{id})$	$(\overline{1},\delta)$	$(\overline{1}, \gamma)$	$(\overline{1}, \alpha)$	$(\overline{0},\beta)$	$(\overline{0}, \varepsilon)$	$(\overline{0}, \mathrm{id})$	$(\overline{0}, \delta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \alpha)$
$(\overline{1}, \gamma)$	$(\overline{1}, \gamma)$	$(\overline{1},\delta)$	$(\overline{1},\varepsilon)$	$(\overline{1}, \mathrm{id})$	$(\overline{1}, \alpha)$	$(\overline{1},\beta)$	$(\overline{0}, \gamma)$	$(\overline{0},\delta)$	$(\overline{0},\varepsilon)$	$(\overline{0}, \mathrm{id})$	$(\overline{0}, \alpha)$	$(\overline{0},\beta)$
$(\overline{1},\delta)$	$(\overline{1},\delta)$	$(\overline{1}, \gamma)$	$(\overline{1}, \alpha)$	$(\overline{1},\beta)$	$(\overline{1},\varepsilon)$	$(\overline{1}, \mathrm{id})$	$(\overline{0},\delta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \alpha)$	$(\overline{0},\beta)$	$(\overline{0},\varepsilon)$	$(\overline{0}, id)$
$(\overline{1},\varepsilon)$	$(\overline{1},\varepsilon)$	$(\overline{1},\beta)$	$(\overline{1}, \gamma)$	$(\overline{1}, \alpha)$	$(\overline{1}, \mathrm{id})$	$(\overline{1},\delta)$	$(\overline{0},\varepsilon)$	$(\overline{0},\beta)$	$(\overline{0}, \gamma)$	$(\overline{0}, \alpha)$	$(\overline{0}, \mathrm{id})$	$(\overline{0}, \delta)$

- 1. Determine the order of all elements of $\mathbb{Z}_2 \times S_3$.
- 2. Show that there are subgroups of $\mathbb{Z}_2 \times S_3$ of all possible cardinalities compatible with Lagrange's theorem (i.e., the divisors of #*G*, which is called the *order* of *G*).
- 3. Consider the cyclic subgroup $H := \langle (\overline{1}, \alpha) \rangle$. Compute all left and right cosets of H, and use this to determine whether H is a normal subgroup.
- 4. Is the cyclic subgroup $K := (\overline{1}, \varepsilon)$ normal? Do not use the definition of normality.
- 5. Describe explicitly the quotient *G*/*K*. Give an explicit isomorphism *G*/*K* $\cong \mathbb{Z}_2$.
- 6. Show that $G/(\{0\} \times S_3) \cong \mathbb{Z}_2$, by using the First Isomorphism Theorem.

Warm-up 2. Prove the second item in Remarks 2.23 of the lecture notes:

 $x\sim_H y \qquad \Leftrightarrow \qquad y\cdot x^{-1}\in H \qquad \Leftrightarrow \qquad y\in Hx.$

1

Problem set 3

Deadline: Tue 31.1.2023 at 10am

Homework

Homework 1. Let *X* be a set. Recall that a partition of *X* is a collection of non-empty subsets of *X* which are pairwise disjoint and whose union is *X*. Define the map

$$\Phi: \{ \text{equivalence relations on } X \} \longrightarrow \{ \text{partitions of } X \}$$
$$\sim \longmapsto X/\sim .$$

- 1. Show that Φ is well-defined, that is, X/\sim is a partition of X. [2 points]
- 2. Show that Φ is injective. [2 points]
- 3. Show that Φ is surjective.

Homework 2. Let *G* be a group. Let *H* and *K* be subgroups of *G*, with *K* normal in *G* and satisfying $K \subseteq H \subseteq G$.

1. Show that *K* is normal in *H*.

2. Show that the set
$$H/K = \{hK \mid h \in H\}$$
 is a subgroup of $G/K = \{gK \mid g \in G\}$. [4 points]

Homework 3. Consider the group $G := \mathbb{Z}_3 \times S_3$ with operation defined component-wise.

Let
$$\delta := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \in S_3$$
 and define the cyclic subgroups $H_1 := \langle (\overline{0}, \delta) \rangle$ and $H_2 := \langle (\overline{1}, \operatorname{id}_{\{1,2,3\}}) \rangle$

- 1. Show that H_1 and H_2 are isomorphic, and both normal in G. [2 points]
- 2. Show that $G/H_1 \cong \mathbb{Z}_6$ and $G/H_2 \cong S_3$. [3 points]
- 3. Show that G/H_1 and G/H_2 are not isomorphic. [1 point]

Fill-in-the-blanks. Complete the proof of the following claim:

Claim. Let *G* be a finite group, and let $H \subset G$ be a subgroup with $\#H = \frac{\#G}{2}$. Then *H* is normal in *G*.

Proof. First of all, by Lagrange's theorem we know that

$$#(G/\sim_H) = #(G/\approx_H) = \frac{#}{#} = 2,$$

hence there are exactly two right cosets and exactly two left cosets. Next, we show the normality of *H* by showing that the left and right cosets coincide, that is, for all $x \in G$, we have _____=___. We do this in two parts.

- For all $x \in H$, we show that Hx = H = xH. This follows from ______ of Problem set 1.
- For all *x* ∈ *G* \ *H*, we show that *Hx* = *G* \ *H* = *xH*. An element *y* ∈ *Hx* can be written as *y* = _____, for some _____ ∈ *H*. We want to show that *y* ∉ *H*. Indeed, if we had *y* ∈ *H*, then, since *H* is a subgroup, we would also have *x* = _____ · *y* ∈ *H*, and this is a contradition, since *x* ∉ *H*. Similarly for *xH*.

Since the cosets form a partition of *G*, the only options for Hx and xH are *H* or $G \setminus H$. And since any element $x \in G$ is either in *H* or in $G \setminus H$, this concludes the proof. [3 points]

[2 points]

[2 points]