PHYS-E0525 Microscopy of Nanomaterials P (5 cr)

Prof. Janne Ruokolainen (nanotalo 102)

Email: Janne.Ruokolainen@aalto.fi

First lecture 17.1. 2023

Tuesday 12.15 – 14

Assistant: Shruti Shandilya Email: shruti.shandilya@aalto.fi

Course overview:

The course gives basic knowledge of the microscopy of materials nanoscale structures - including soft and hard materials. Lectures will concentrate on transmission electron microscopy (TEM, STEM): high resolution imaging, electron diffraction and analytical microscopy by using elemental analyses (EDX, EELS), cryo-electron microscopy and 3D electron tomography. Additionally, scanning electron microscopy (SEM and FIB), atomic force microscopy (AFM) and methods to prepare samples are lectured..

Lectures:

Prof. Janne Ruokolainen, Dr. Hua Jiang, Dr. Jani Seitsonen, Dr. Ramzy Abdelaziz, Prof. Peter Liljeroth, Dr. Lide Yao

Tentative Schedule

- 17.1. Introduction & Nanomicroscopy center (JR)
- 24. 1. TEM Basics (JR)
- 31. 1. Advanced TEM 1 (Hua)
- 7. 2. Advanced TEM 2 (Hua)
- 14. 2. Advanced TEM 3 (Hua)
- 21.2. no lecture (exam period at Aalto)
- 28. 2. Cryo-TEM and Soft matter Sample preparation (JR)
- 7.3. SEM (Ramzy)
- 14. 3. 3D-TEM-Tomography (Jani)
- 21. 3. FIB and Sample preparation (Lide)
- 28.3. STM/AFM (Peter)

Summary:

Intro, Basic TEM, Cryo TEM ~ 3 lectures Advanced TEM 2-3 lectures (High resolution TEM and STEM, diffraction, spectroscopy EDX, EELS) STM/AFM FIB/sample preparation SEM Tomography

Additional Literature: (optional)

Book 1: Transmission electron microscopy Basics I (David William and Barry Carter) 2nd edition

Book 2: G.H. Michler "Electron microscopy of polymers" (TEM, SEM, AFM..)

Book 3: A practical Guide to Tramsmission Electron Microscopy (Zhiping Luo)

Additional Literature if you are interested to study more in this topic.

Book 1: Transmission electron microscopy Basics Part I (David William and Barry Carter) 2nd edition

This book has *more theory*, and it also has lots of technical information about microscope (vacuum systems, electron sources, sample holders etc..) and it also has 3 other books for Advanced TEM (Part 2: Diffraction , Part 3: high resolution imaging and Part 4: Spectroscopy)

Book 2: G.H. Michler "Electron microscopy of polymers" (TEM, SEM, AFM..)
A bit easier book to study – more practical and has also SEM and AFM parts (First
250 pages are useful – rest are specific polymer applications..)

Book 3: A practical Guide to Transmission Electron Microscopy (Zhiping Luo) This book is most practical especially those who want to learn how to operate microscopes Chapter 1-3 and (partly chapter 5?) and chapters 7-9. (chapters 4, 5, and 6 are diffraction and perhaps more advanced level than this course..)

Book 1: Part 1: Basics

Transmission Electron Microscopy A Textbook for Materials Science David B. Williams, C. Barry Carter

PA	RT 1	BASI	CS	1
1	The	Transmi	ission Electron Microscope	3
	Cha	pter Pre	view	3
	1.1	What I	Materials Should We Study in the TEM?	3
	1.2	Why U	Jse Electrons?	4
		1.2.A	An Extremely Brief History	4
		1.2.B	Microscopy and the Concept of Resolution	5
		1.2.C	Interaction of Electrons with Matter	7
		1.2.D	Depth of Field and Depth of focus	8
		1.2.E	Diffraction	8
	1.3	Limita	tions of the TEM	9
		1.3.A	Sampling	9
		1.3.B	Interpreting Transmission Images	9
		1.3.C	Electron Beam Damage and Safety	10
		1.3.D	Specimen Preparation	11
	1.4	Differe	ent Kinds of TEMs	11
	1.5	Some I	Fundamental Properties of Electrons	11
	1.6	Micros	scopy on the Internet/World Wide Web	15
	1.0	16A	Microscopy and Analysis-Related Web Sites	15
		16 B	Microscopy and Analysis Reflaced theo bites	15
	Cha	nter Sun	nmary	17
	Una	pter bun		· · /

Part 1: Basics

Second Edition

2	Scatte	ering and Diffraction	23
	Chap 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 Chap	ter Preview	23 25 26 27 27 28 28 28 28 29 30 30 31 33 34 34 36
3	Elasti	c Scattering	39
3	Elasti Chap 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	ter Preview	39 39 40 41 41 42 43 44 45 46 47 47 48

	Ine	lastic Scattering and Beam Damage	53
	Ch	anter Preview	53
	4.1	Which Inelastic Processes Occur in the TEM?	53
	4.2	X-ray Emission	55
		4.2.A Characteristic X-rays	55
		4.2.B Bremsstrahlung X-rays	60
	4.3	Secondary-Electron Emission	60
		4.3.A Secondary Electrons.	60
		4.3.B Auger Electrons	61
	4.4	Electron-Hole Pairs and Cathodoluminescence (CL)	62
	4.5	Plasmons and Phonons	63
	4.6	Beam Damage	64
		4.6.A Electron Dose	65
		4.6.B Specimen Heating	65
		4.6.C Beam Damage in Polymers	66
		4.6.D Beam Damage in Covalent and Ionic Crystals	66
		4.6.E Beam Damage in Metals	66
		4.6.F Sputtering	68
	Ch	apter Summary	68
5	Elec	tron Sources	73
	Cha	nt on Drowiew	72
	5 1	The Druging of Different Electron Sources	73
	5.1	5.1.A Thermionic Emission	73
		5.1.A Field Emission	/+
			74
	5.2	The Characteristics of the Electron Beam	74
	5.2	The Characteristics of the Electron Beam	74 75 75
	5.2	The Characteristics of the Electron Beam	74 75 75 76
	5.2	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size	74 75 75 76 77
	5.2	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability	74 75 75 76 77 77
	5.2	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability	74 75 75 76 77 77 77
	5.2	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability Electron Guns 5.3.A Thermionic Guns	74 75 75 76 77 77 77 77
	5.2 5.3	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability Electron Guns 5.3.A Thermionic Guns 5.3.B Field Emission Gung (EEGs)	74 75 75 76 77 77 77 77
	5.2 5.3	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability 5.3.A Thermionic Guns 5.3.B Field-Emission Guns (FEGs) Comparison of Guns	74 75 75 76 77 77 77 77 80 81
	5.2 5.3 5.4	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability 5.2.D Stability Electron Guns 5.3.A 5.3.B Field-Emission Guns (FEGs) Comparison of Guns Measuring Your Gun Characteristics	74 75 75 76 77 77 77 77 80 81
	5.25.35.45.5	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability Electron Guns 5.3.A 5.3.B Field-Emission Guns (FEGs) Comparison of Guns 5.5.A Beam Current 5.5.A	74 75 76 77 77 77 77 80 81 82 82
	5.2 5.3 5.4 5.5	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability Electron Guns	74 75 75 76 77 77 77 77 80 81 82 82
	5.2 5.3 5.4 5.5	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability Electron Guns 5.3.A Thermionic Guns 5.3.B Field-Emission Guns (FEGs) Comparison of Guns Measuring Your Gun Characteristics 5.5.A Beam Current 5.5.B Convergence Angle 5.5.C	74 75 75 76 77 77 77 77 77 80 81 82 82 83 83
	5.2 5.3 5.4 5.5	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability 5.2.D Stability Electron Guns 5.3.A 5.3.B Field-Emission Guns (FEGs) Comparison of Guns Measuring Your Gun Characteristics 5.5.A Beam Current 5.5.B Convergence Angle 5.5.C Calculating the Beam Diameter 5.5.D Measuring the Beam Diameter	74 75 75 76 77 77 77 77 80 81 82 82 83 83
	5.2 5.3 5.4 5.5	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability 5.2.D Stability Electron Guns 5.3.A 5.3.B Field-Emission Guns (FEGs) Comparison of Guns Measuring Your Gun Characteristics 5.5.A Beam Current 5.5.B Convergence Angle 5.5.C Calculating the Beam Diameter 5.5.D Measuring the Beam Diameter	74 75 76 77 77 77 77 80 81 82 83 83 83 85
	5.2 5.3 5.4 5.5	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability Electron Guns	74 75 75 76 77 77 77 77 80 81 82 83 83 83 85 85
	5.2 5.3 5.4 5.5	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability Electron Guns	74 75 75 76 77 77 77 77 77 77 77 80 81 82 83 83 83 85 85 86
	5.2 5.3 5.4 5.5	5.1.B Field Emission The Characteristics of the Electron Beam 5.2.A Brightness 5.2.B Temporal Coherency and Energy Spread 5.2.C Spatial Coherency and Source Size 5.2.D Stability Electron Guns	$\begin{array}{c} 74\\ 75\\ 75\\ 76\\ 77\\ 77\\ 77\\ 77\\ 80\\ 81\\ 82\\ 83\\ 85\\ 85\\ 85\\ 86\\ 86\\ 86\\ 86\end{array}$

6	Lens	ses, Aper	tures, and Resolution	91
	Cha	pter Pre	view	91
	6.1	Why L	earn About Lenses?	91
	6.2	Light C	Optics and Electron Optics	92
		6.2.A	How to Draw a Ray Diagram	92
		6.2.B	The Principal Optical Elements	94
		6.2.C	The Lens Equation	94
		6.2.D	Magnification, Demagnification, and Focus	95
	6.3	Electro	n Lenses	96
		6.3.A	Polepieces and Coils	96
		6.3.B	Different Kinds of Lenses	97
		6.3.C	Electron Ray Paths Through Magnetic Fields	99
		6.3.D	Image Rotation and the Eucentric Plane	100
		6.3.E	Deflecting the Beam	101
	6.4	Apertu	res and Diaphragms	101
	6.5	Real L	enses and their Problems	102
		6.5.A	Spherical Aberration	103
		6.5.B	Chromatic Aberration	104
		6.5.C	Astigmatism	106
	6.6	The Re	solution of the Electron Lens (and Ultimately of the	
		TEM)		106
		6.6.A	Theoretical Resolution (Diffraction-Limited	
			Resolution)	107
		6.6.B	The Practical Resolution Due to Spherical	100
			Aberration	108
		6.6.C	Specimen-Limited Resolution Due to Chromatic	100
		((D	Aberration	109
	67	6.6.D	Confusion in the Definitions of Resolution	109
	6.7	Depth	of Focus and Depth of Field	110
	Chaj	pter Sun	nmary	111

7	How	to 'See' Electrons	115
	Chap 7.1 7.2 7.3 7.4 7.5 7.6 Chap	bter Preview Electron Detection and Display Viewing Screens Electron Detectors 7.3.A Semiconductor Detectors 7.3.B Scintillator-Photomultiplier Detectors/TV Cameras 7.3.C Charge-Coupled Device (CCD) Detectors 7.3.D Faraday Cup Which Detector Do We Use for which Signal? Image Recording 7.5.A Photographic Emulsions 7.5.B Other Image-Recording Methods Comparison of Scanning Images and Static Images Deter Summary	115 115 116 117 117 117 117 117 117 117 117 117
8	Pumr	as and Holders	125
0	r um		127
	Chap	oter Preview	127
	8.1	The Vacuum	127
	8.2	Roughing Pumps	128
	8.3	High/Ultra High Vacuum Pumps	129
		8.3.A Diffusion Pumps	129
		8.3.B Turbomolecular Pumps	129
		8.3.C Ion Pumps	130
	Q /	The Whole System	120
	0.4	Leak Detection	121
	0.J 8.6	Contamination: Hydrocarbons and Water Vapor	131
	8.0	Specimen Holders and Stages	132
	8.8	Side-Entry Holders	132
	8.9	Top-entry Holders	134
	8.10	Tilt and Rotate Holders	134
	8.11	In-Situ Holders	135
	8.12	Plasma Cleaners	138
	Chap	oter Summary	138

9	The	Instrum	ent	141
	Cha	pter Pre	view	141
	9.1	The Il	lumination System	142
		9.1.A	TEM Operation Using a Parallel Beam	142
		9.1.B	Convergent-Beam (S)TEM Mode	143
		9.1.C	The Condenser-Objective Lens	145
		9.1.D	Translating and Tilting the Beam	147
		9.1.E	Alignment of the C2 Aperture	147
		9.1.F	Condenser-Lens Defects	148
		9.1.G	Calibration	149
	9.2	The C	Dejective Lens and Stage	150
	9.3	Form	ing DPs and Images: The TEM Imaging System	152
		9.3.A	Selected-Area Diffraction	152
		9.3.B	Bright-Field and Dark-Field Imaging	155
		9.3.C	Centered Dark-Field Operation	155
		9.3.D	Hollow-Cone Diffraction and Dark-Field Imaging	157
	9.4	Form	ing DPs and Images: The STEM Imaging System	158
		9.4.A	Bright-Field STEM Images	159
		9.4.B	Dark-Field STEM Images	161
		9.4.C	Annular Dark-Field Images	161
		9.4.D	Magnification in STEM	161
	9.5	Alignm	ent and Stigmation	161
		9.5.A	Lens Rotation Centers	161
		9.5.B	Correction of Astigmatism in the Imaging Lenses .	162
	9.6	Calibra	ting the Imaging System	164
		9.6.A	Magnification Calibration	164
		9.6.B	Camera-Length Calibration	165
		9.6.C	Rotation of the Image Relative to the DP	167
		9.6.D	Spatial Relationship Between Images and DPs	168
	9.7	Other (Calibrations	168
	Cha	pter Sun	nmary	169

Chapter Preview	173 173 174 175 176 176
 10.1 Safety	173 174 175 176 176
 10.2 Self-Supporting Disk or Use a Grid?	174 175 176 176
 10.3 Preparing a Self-Supporting Disk for Final Thinning 1 10.3.A Forming a Thin Slice from the Bulk Sample 1 10.3.B Cutting the Disk 	175 176 176
10.3.A Forming a Thin Slice from the Bulk Sample 1 10.3.B Cutting the Disk	176 176
10.3 B Cutting the Disk	176
	177
10.3.C Prethinning the Disk	1//
10.4 Final Thinning of the Disks	178
10.4.A Electropolishing	178
10.4.B Ion Milling	178
10.5 Cross-Section Specimens 1	182
10.6 Specimens on Grids/Washers	183
10.6.A Electropolishing—The Window Method	
for Metals and Alloys	183
10.6.B Ultramicrotomy	183
10.6.C Grinding and Crushing	184
10.6.D Replication and Extraction	184
10.6.E Cleaving and the SACT	186
10.6.F The 90° Wedge	186
10.6.G Lithography	187
10.6.H Preferential Chemical Etching	187
10.7 FIB	188
10.8 Storing Specimens.	189
10.9 Some Rules 1	00
Chapter Summary	189

Book 2:

SPRINGER LABORATORY

G. H. Michler

Electron Microscopy of Polymers

Part I Techniques of Electron Microscopy

1	OV	ERVIEV	V OF TECHNIQUES	7
	Refe	erences.		14
2	TRA	ANSMIS	SSION ELECTRON MICROSCOPY:	
	FUN	NDAME	ENTALS OF METHODS AND INSTRUMENTATION	15
	2.1	A Brie	f History	15
	2.2	Funda	mentals of Electron Optics and Instrumentation	17
		2.2.1	Some Fundamental Properties of Electrons	17
		2.2.2	Electron Lenses	19
		2.2.3	Electron-Optical Aberrations and Resolution	22
		2.2.4	Vacuum System	26
	2.3	The In	strument	27
		2.3.1	Electron Gun	30
		2.3.2	Illumination System	33
		2.3.3	Objective Lens and Specimen Stage	35
		2.3.4	Image-Forming System	36
		2.3.5	Viewing Chamber and Image Acquisition	37
		2.3.6	Alignment and Operation of Transmission Electron	
			Microscopes	39
	2.4	Funda	mentals of Image Formation	40
		2.4.1	Scattering Mechanism and Contrast Formation	41
		2.4.2	Electron Diffraction and Diffraction Contrast	44
		2.4.3	Fundamentals of the Imaging Process	46
	Refe	rences.		50

3	TRANSMISSION ELECTRON MICROSCOPY: CONVENTIONAL AND SPECIAL INVESTIGATIONS OF POLYMERS					
	3.1	Conventional Investigations Utilising Mass-Thickness Contrast	53			
	3.2	Electron Diffraction	55			
	3.2.1	Selected Area Diffraction	55			
	3.2.2	Structure Analysis	55			
3.3	High	-Resolution Transmission Electron Microscopy	57			
	3.3.1	Introduction	57			
	3.3.2	Evaluation and Reduction of Radiation Damage	57			
	3.3.3	Application of HRTEM	58			
3.4	Phase	e Contrast Transmission Electron Microscopy	60			
	3.4.1	Phase Contrast at Large Defocus Values	60			
	3.4.2	Phase Contrast by Means of Phase Plates	60			
3.5	Elect	ron Holography	62			
	3.5.1	Introduction	62			
	3.5.2	Image Plane Off-Axis Holography	62			
	3.5.3	Examples	64			
3.6	Low-	Voltage Transmission Electron Microscopy	64			
	3.6.1	Introduction	64			
	3.6.2	A Dedicated Low-Voltage TEM and its Application	64			
3.7	High	-Voltage Transmission Electron Microscopy	65			
	3.7.1	Introduction	65			
	3.7.2	Advantages and Applications of HVTEM	65			
3.8	Scan	ning Transmission Electron Microscopy	66			
	3.8.1	Introduction	66			
	3.8.2	Similarities and Differences between STEM and TEM	67			
	3.8.3	Application of Bright-Field and Dark-Field Modes	68			
3.9	Anal	ytical Transmission Electron Microscopy	70			
	3.9.1	Introduction	70			
	3.9.2	EELS Investigations	72			
	3.9.3	Electron Spectroscopic Imaging	75			
3.10	Elect	ron Tomography	78			
	3.10.1	Introduction	78			
	3.10.2	2 Data Acquisition, Image Alignment and Reconstruction	79			
	3.10.3	Resolution of Reconstructed Data	80			
	3.10.4	Application of Electron Tomography	81			
Refe	rences	• • •	81			

4	SC.	ANNIN	G ELECTRON MICROSCOPY (SEM)	87
	4.1	A Brie	ef History of SEM	87
	4.2	Funda	amentals of Electron Optics and Signal Generation	88
		4.2.1	Principle of SEM	88
		4.2.2	The Lateral Resolution Power of SEM	89
		4.2.3	Comparison of Various Cathode Types	92
		4.2.4	Depth of Focus	92
		4.2.5	Interaction of Primary Electrons with Sample	92
	4.3	The II	nstrumentation of SEM	95
		4.3.1	The Column	95
		4.3.2	Specimen Chamber and Goniometer	97
		4.3.3	Detectors	98
		4.3.4	Signal Display and Magnification	99
	4.4	Contras	st Formation and Charging Effects	100
		4.4.1	Secondary Electron Contrast	100
		4.4.2	Contrast of Backscattered Electrons (Solid State Detector) .	103
		4.4.3	Charging Effect	103
	4.5	X-Ray I	Microanalysis	105
		4.5.1	Physical Fundamentals of the Generation of X-Rays	105
		4.5.2	X-Ray Microanalysis Techniques	107
		4.5.3	Detector for EDX Analysis	108
		4.5.4	Quantitative EDX Analysis	111
		4.5.5	X-Ray Mapping	112
		4.5.6	Wavelength Dispersive X-Ray Microanalysis (WDX)	112
	4.6	Enviror	nmental Scanning Electron Microscope (ESEM™)	116
		4.6.1	Low-Vacuum SEM and ESEM™	116
		4.6.2	Avoiding Charging	116
		4.6.3	The Wet Mode	117
		4.6.4	The Gaseous Secondary Electron Detector (GSED)	119
	Refei	ences	· · · · · · · · · · · · · · · · · · ·	120

5	ATC	DMIC FORCE MICROSCOPY (AFM) 121
	5.1	Introduction
	5.2	Methodical and Instrumental Fundamentals 124
	5.3	Modes of Operation 127
		5.3.1 Contact Mode 127
		5.3.2 Force Modulation Mode 130
		5.3.3 Dynamic Operational Modes 131
		5.3.4 Tapping Mode 132
	5.4	Typical and Special AFM Applications
	Refe	rences
6	IN S	ITU MICROSCOPY
	6.1	Overview
	6.2	Micromechanical In Situ Tests 147
		6.2.1 Technical Equipment
		6.2.2 In Situ Microscopy in (E)SEM 148
		6.2.3 In Situ Microscopy in (HV)TEM 150
	6.3	In Situ Microscopy in AFM 154
	Refe	rences
7	IMA	GE PROCESSING AND IMAGE ANALYSIS 161
	7.1	Overview
	7.2	Image Processing 162
	7.3	Image Analysis 163
	7.4	Fourier Transformation
	7.5	Stereoscopic Imaging
	Refe	rences

8	PRO	DBLEMS POLYM	S ASSOCIATED WITH THE ELECTRON MICROSCOPY FRS 175
	81	Overvi	ew 175
	8.2	Irradia	tion Sensitivity of Polymers 176
	8.3	Low C	optrast of Polymers 177
	0.J Q 1	Motho	ds of Investigating the Merphologies of Delymore 178
	0.4	Nietho	Deciders Deutides Eihnes
		8.4.1	Powders, Particles, Fibres
	o -	8.4.2	Bulk Polymers
	8.5	Metho	ds for Studying Micromechanical Processes
	Refe	rences.	
9	PRE	PARAT	ION OF SURFACES
	9.1	Overvi	ew
	9.2	Surface	es in Their Natural Form
	9.3	Smoot	h and Etched Surfaces 186
		9.3.1	Chemical Etching
		9.3.2	Physical Etching
	9.4	Fractu	re Surfaces
	9.5	Investi	gation of Surfaces
	Refe	rences.	
10	PRF	PARAT	ION OF THIN SECTIONS:
	(CR	YO)ULT	TRAMICROTOMY AND (CRYO)MICROTOMY 199
	10.1	Óvervi	ew 199
	10.2	Instrur	nentation
		10.2.1	Microtomes
		10.2.2	Ultramicrotomes
		10.2.3	Cryomicrotomes and Cryoultramicrotomes
		10.2.4	Knives 200
		10.2.5	Modern Trends 202
	10.3	Worki	ng with a Microtome and an Ultramicrotome 203
	10.4	Specim	en Preparation 204
	10.1	10 4 1	Embedding 204
		10.4.2	Specimen Trimming 205
		10.4.2	Fixation and Staining 205
	10.5	Illtrath	in Sectioning 206
	10.5	10.5.1	Sectioning Decemeters 206
		10.5.1	Wet and Dry Sectioning Techniques 206
		10.5.2	De ana Tarata anterna Ella anterna constructores 200
		10.5.5	Room Temperature Oltramicrotomy
		10.5.4	Cryoultramicrotomy
		10.5.5	Collecting Sections on Grids 209
	10.6	Problen	ns, Errors and Solutions 212
		10.6.1	Overview
		10.6.2	Typical Errors and Possible Solutions 212
	Refer	ences	

Part II in this book is mainly soft materials sample preparation – i.e. quite useful for many of you

11	SPECIAL PREPARATION TECHNIQUES
	11.1 Preparation of Polymer Films from Solutions
	11.1.1 Introduction
	11.1.2 Solution Behaviour of Polymers
	11.1.3 Spin-Coating 220
	11.1.4 Dip-Coating 222
	11.1.5 Solution Casting 223
	11.1.6 Examples and Problems 224
	11.2 Preparation Using the Focussed Ion Beam Technique 227
	11.2.1 Introduction
	11.2.2 Principle 228
	11.2.3 Examples
	References
12	PREPARATION FOR (IN SITU) DEFORMATION TESTS
	12.1 Overview
	12.2 Specimen Preparation
	References
13	CONTRAST ENHANCEMENT
	13.1 Overview
	13.2 Hardening (Fixation)
	13.2.1 Physical Hardening (Fixation)
	,
	13.2.2 Chemical Fixation
	13.2.2Chemical Fixation24313.3Chemical Staining Procedures243
	13.2.2Chemical Fixation24313.3Chemical Staining Procedures24313.3.1Media Used to Perform Chemical Staining of Polymers243
	13.2.2Chemical Fixation24313.3Chemical Staining Procedures24313.3.1Media Used to Perform Chemical Staining of Polymers24313.3.2Chemical Staining of Compact Specimens
	13.2.2Chemical Fixation24313.3Chemical Staining Procedures24313.3.1Media Used to Perform Chemical Staining of Polymers24313.3.2Chemical Staining of Compact Specimens246
	13.2.2Chemical Fixation24313.3Chemical Staining Procedures24313.3.1Media Used to Perform Chemical Staining of Polymers24313.3.2Chemical Staining of Compact Specimens Before Sectioning24613.3.3Chemical Staining of Thin Sections248
	13.2.2Chemical Fixation24313.3Chemical Staining Procedures24313.3.1Media Used to Perform Chemical Staining of Polymers24313.3.2Chemical Staining of Compact Specimens24613.3.3Chemical Staining of Thin Sections24613.4Enhancement of Contrast Through Physical Effects248
	 13.2.2 Chemical Fixation
	 13.2.2 Chemical Fixation
	 13.2.2 Chemical Fixation

Part III Main Groups of Polymers

14	STR	UCTURAL HIERARCHY OF POLYMERS 263
	14.1	Overview
	14.2	Macromolecular Structures
		14.2.1 Constitution
		14.2.2 Configuration
		14.2.3 Conformation
	14.2	14.2.4 Macromolecule Size
	14.3	Supramolecular Structures
	14.4	Morphology
	14.5	Basic Relationships Between Macromolecular Parameters
	D C	and (Micro)mechanical Properties 2/3
	Kere	rences
15	AM	ORPHOUS POLYMERS
	15.1	Overview
	15.2	Morphology
	15.3	Micromechanical Behaviour 281
	15.4	Additional Examples of Amorphous Polymers 287
	Refe	rences
16	SEM	IICRYSTALLINE POLYMERS 295
10	16.1	Overview 295
	16.2	Morphology
	1012	16.2.1 Structural Hierarchy in Semicrystalline Polymers
		16.2.2 Methods of Morphological Analysis
	16.3	Micromechanical Behaviour
		16.3.1 Brittle Behaviour
		16.3.2 Ductile Behaviour
		16.3.3 High-Strength Fibres and Parts
	16.4	Additional Examples of Semicrystalline Polymers 321
	Refe	rences
17	POI	YMER BLENDS 329
17	17.1	Overview 329
	17.2	Morphology 331
	17.3	Micromechanical Behaviour 338
	17.4	Examples
	1,.1	17.4.1 Blends of Amorphous Polymers
		17.4.2 Blends of Amorphous and Semicrystalline Polymers 343
		17.4.3 Blends of Semicrystalline Polymers
	Refe	rences

Part III in this book is special applications for polymers – i.e. not the topic of this course..

18	HIGH-IMPACT RUBBER-MODIFIED POLYMERS	51
	18.1 Overview	51
	18.2 Morphology	2
	18.3 Micromechanical Processes	7
	18.4 Additional Toughening Mechanisms	8
	References	0
10		22
19	10.1 Operations 27	2
	19.1 Overview	5
	19.2 Morphology	5
	19.2.1 Block Copolymer Nanostructures via Self-Assembly	С 10
	19.3. Deformation Mechanisms in Plock Copolymer Morphology	9
	19.5 Deformation Mechanisms in Block Copplymers	10
	Deferences 30	11
	Kelefelices	1
20	RUBBERS AND ELASTOMERS	13
	20.1 Overview	3
	20.2 Morphology of Rubbers and Elastomers)5
	20.3 Micromechanical Deformation Behaviour	8
	References	12
		_
21	POLYMER COMPOSITES	5
	21.1 Overview	15
	21.2 Particle-Reinforced Polymer Composites	6
	21.5 Fibre-Reinforced Polymer Composites	47
	Keleichices	/
22	POLYMER NANOCOMPOSITES	9
	22.1 Overview	9
	22.2 Examples of Different Classes of Nanocomposites 42	2
	22.2.1 Polymer Nanocomposites Based on Zero-Dimensional	
	Filler Particles (POSS) 42	2
	22.2.2 Polymer Nanocomposites Based on One-Dimensional	
	Filler Particles (MWCNT) 42	4
	22.2.3 Polymer Nanocomposites Based on Two-Dimensional	_
	Filler Particles (MMT) 42	5
	22.2.4 Polymer Nanocomposites Based on Three-Dimensional	_
	Filler Particles (SiO ₂) 42	7
	References	8
23	BIOMATERIALS	.9
	23.1 Overview	9
	23.2 Electron Microscopy of Polymeric Biomaterials:	
	Specific Problems and Solutions	1

	23.3	Exampl	les
		23.3.1	Natural Biomaterials: Bone 432
		23.3.2	UHMWPE in Orthopaedics 433
		23.3.3	Acrylic Bone Cements
		23.3.4	Bioactive Composites for Bone Replacement 435
		23.3.5	Dental Composites 436
		23.3.6	Sutures, Scaffolds and Meshes 437
		23.3.7	Ureter Stents
		23.3.8	Silicone-Based Tracheal Stents and Voice Prostheses 439
	Refe	rences	
24	SPE	CIAL PF	ROCESSING FORMS 445
	24.1	Overvie	ew
	24.2	Multila	yered Films
		24.2.1	Introduction
		24.2.2	Morphology
		24.2.3	Micromechanical Deformation Mechanisms 448
	24.3	Hot-Co	ompacted Self-Reinforced Polymers 451
		24.3.1	Overview
		24.3.2	Morphology 452
	24.4	Nanofil	ores by Electrospinning 455
		24.4.1	Overview
		24.4.2	Morphology 456
		24.4.3	Micromechanical Deformation Mechanism 458
	24.5	Microf	ormed Materials 460
		24.5.1	Overview
		24.5.2	Several Examples
	Refe	rences	
SUI	BIECT	INDEX	465
~~~			

Book 3: A Practical Guide to Transmission Electron Microscopy (2 parts)

### MATERIALS CHARACTERIZATION AND ANALYSIS COLLECTION

Richard Brundle, Collection Editor

## A Practical Guide to Transmission Electron Microscopy Fundamentals

**Zhiping Luo** 

MATERIALS CHARACTERIZATION AND ANALYSIS COLLECTION

Richard Brundle, Collection Editor

A Practical Guide to Transmission Electron Microscopy Volume II Advanced Microscopy

**Zhiping Luo** 

## Book 3: A Practical Guide to Transmission Electron Microscopy: **Fundamentals** (chapters 1,2,3)

Chapter 1	Introduction	1
	1.1 Microscope Resolution	2
	1.2 Interactions of Electrons with Specimen	4
	1.3 Comparison of TEM with Other Microscopy	
	Techniques	6
	References	11
Chapter 2	Sample Preparation	13
	2.1 Material Samples	14
	2.1.1 TEM Grids	15
	2.1.2 Ion Milling	20
	2.1.3 Electropolishing	26
	2.1.4 Focused Ion Beam	30
	2.1.5 Microtomy	31
	2.2 Biological Samples	36
	2.2.1 Particulate Samples	37
	2.2.2 Cells and Tissue Samples	39
	References	42
Chapter 3	Instrumentation and Operation	45
	3.1 Construction	45
	3.1.1 Electron Gun	45
	3.1.2 Electromagnetic Lens	49
	3.1.3 Condenser Lenses and Condenser	
	Apertures	52
	3.1.4 Objective Lens and Objective Aperture	55
	3.1.5 Intermediate Lens and Diffraction	
	Aperture	57

CONTENTS

х

	3.1.6 Projector Lens 59	
	3.1.7 Viewing Screen and Camera 59	
	3.2 Instrument Imperfections, Alignments, Corrections,	
	and Calibrations60	
	3.2.1 Beam Shift and Beam Tilt 60	
	3.2.2 Spherical Aberration61	
	3.2.3 Chromatic Aberration	
	3.2.4 Depth of Field and Depth of Focus	
	3.2.5 Specimen Height 64	
	3.2.6 Astigmatism	
	3.2.7 Aperture Alignment	
	3.2.8 Magnification Calibration	
	3.2.9 Camera Length Calibration71	
	3.2.10 Magnetic Rotation Calibration	
	3.3 TEM Operating Procedures	
	3.3.1 Startup	
	3.3.2 Specimen Loading and Unloading7	
	3.3.3 Alignments	
	3.3.4 Data Recording78	
	3.3.5 Finishing	
	References	
Chapter 4	Electron Diffraction I	
	4.1 Formation of Electron Diffraction	
	4.2 Reciprocal Space	
	4.3 Indexing of Electron Diffraction Patterns	
	4.3.1 Indexing of Powder Patterns	
	4.3.2 Indexing of Single-Crystal Diffraction	
	Patterns	
	4.3.3 Indexing of Compound Patterns: Twins 92	
	4.3.4 Indexing of Compound Patterns: Multiple	
	Phases	
	4.3.5 Indexing of Compound Patterns: Double	
	Diffraction	
	4.4 Experimental Procedures 101	
	4.5 Simulation of Diffraction Patterns	

	References
Chapter 5	Imaging I109
	5.1 Imaging Contrast109
	5.2 Imaging with Mass-Thickness Contrast110
	5.3 Imaging with Diffraction Contrast111
	5.3.1 Formation of Diffraction Contrast111
	5.3.2 Central Dark-Field Imaging114
	5.3.3 Two-Beam Condition115
	5.3.4 Bragg-Diffracted Beam Intensity117
	5.3.5 Thickness Fringes120
	5.3.6 Bend Contours122
	5.3.7 Weak-Beam Dark-Field Imaging122
	5.3.8 Planar Defects125
	5.3.9 Dislocations127
	References

### And A Practical Guide to Transmission Electron Microscopy, Volume II Advanced Microscopy (chapters 7,8 and 9)

Chapter 6 Electron Diffraction II .....

Chapter 7	Imaging II2	1
	7.1 STEM Imaging2	1
	7.1.1 Formation of STEM Images and Optics2	1
	7.1.2 STEM Experimental Procedures2	4
	7.1.3 STEM Applications2	4
	7.2 High-Resolution Transmission	
	Electron Microscopy2	8
	7.2.1 Principles of HRTEM2	8
	7.2.2 Experimental Operations	7

	7.2.3 Image Interpretation and Simulation
	7.2.4 Image Processing
	References
Chapter 8	Elemental Analyses
	8.1 X-ray Energy-Dispersive Spectroscopy
	8.1.1 Formation of Characteristic X-Rays
	8.1.2 EDS Detector
	8.1.3 EDS Artifacts 57
	8.1.4 Effects of Specimen Thickness, Tilt, and
	Space Location 59
	8.1.5 Experimental Procedures
	8.1.6 EDS Applications64
	8.2 Electron Energy-Loss Spectroscopy
	8.2.1 Formation of EELS73
	8.2.2 EELS Qualitative and Quantitative
	Analyses75
	8.2.3 Energy-Filtered TEM 78
	8.2.4 EFTEM Experimentation and
	Applications 81
	References
Chapter 9	Specific Applications
	9.1 Quantitative Microscopy 92
	9.1.1 Quantification of Size Homogeneity
	9.1.2 Quantification of Directional
	Homogeneity
	9.1.3 Dispersion Quantification
	9.1.4 Electron Diffraction Pattern Processing
	and Refinement 103
	9.2 In situ Microscopy 107
	9.2.1 <i>In situ</i> Heating 108
	9.2.2 In situ Cooling 114
	9.2.3 In situ Irradiation 116
	9.3 Cryo-EM 117
	9.4 Low-Dose Imaging 122
	9.5 Electron Tomography125
	9.5.1 Experimental Procedures
	9.5.2 Object Shapes
	9.5.3 Nanoparticle Assemblies
	9.5.4 Nanoparticle Superlattices
	References 143
	1.0101010005

## PHYS-E0526 Microscopy of Nanomaterials, laboratory course P (5 cr)

Assistant: Shandilay Shruti and other teachers: Dr. Jani Seitsonen (TEM & Tomography), Dr. Hua Jiang (HR-TEM), Dr. Ramzy Abdelaziz (SEM), Dr. Lide Yao (FIB)

As practical exercises nanostructured materials are studied with various microscopy methods. Course includes practical microscopy exercises by using transmission electron microscopy (TEM), scanning electron microscopy (SEM) **and Focused ion beam (FIB).** Number of students participating to the course will be limited. (max. ~18) Based on applications... <u>nmc-contact-sci@aalto.fi</u> Deadline 6. 2. 2023

## **Basic exercises – Demos:**

## (6 persons per group):

- 1) High resolution TEM (Jeol 2200FS Cs-corrected TEM)
- 2) 3D tomography data collection (Jeol 3200FSC liquid helium cryo TEM or Jeol2800) + Tomography data processing (Computer room)

## Small group exercises: (Select 2)

(3 persons per group)

- 1) basic-TEM imaging
- 2) SEM imaging or
- 3) FIB -SEM processing/imaging

### **Independent Small group exercises** (without supervision.. 3 person per group)

without supervision.. 3 person per

- (2 exercises)
- 1) TEM imaging
- 2) SEM imaging
- 3) ...

## To apply for the Laboratory Course – Answer the following questions just writing a short email and send it to the <u>nmc-contact-sci@aalto.fi</u> deadline Friday 6. 2. 2023

#### 1. You are a *

- graduate student
   exchange student
   Ph.D student
- post doc/other

#### 2. Your primary affiliation is *

- Aalto University
- O University of Helsinki
- VTT
- Other

#### 3. Do you belong to a research group? If yes, who is your supervisor/instructor?

Research Group Supervisor/Instructor

4. Write with your own words your primary motivation to participate on the laboratory course. *

#### 5. What instrument do you plan to use in your research?

- AFM
- SEM
- TEM
- HRTEM
- Cryo-TEM
- TEM tomography
- XRAY

#### 6. Contact Information

Firstname *	
Lastname *	
Email *	
Student Number (if you have one)	

## Exam for lecture course PHYS-E0525 Microscopy of Nanomaterials... We have multiple choice questions from TEM, SEM, FIB, AFM etc.. + some normal questions – where you write short answers

### **TEM Questions**

- 1. What is STEM?
  - o Scanning transmission electron microscopy
  - o Standard transmission electron microscopy
  - Scanning and transmission electron microscopy
  - o Suitable transmission electron microscopy
  - Scanning tunneling electron microscopy

#### 2. Bright field TEM is best described as?

- o Microscopy where the electron beam is well aligned
- The exclusion of the scattered electron beam while the beam is directed onto the sample
- $\circ~$  Any imaging that must be undertaken in a well lit room
- The exclusion of the central beam electrons by tilting the beam, displacing the objective aperture or introducing the beam stop
- o Microscopy where the filament has not broken

#### 3. How can chromatic aberrations be minimized in a TEM?

- $\circ$  Use an electron gun with high energy spread and a thin specimen
- $\circ$  Use an electron gun with low energy spread and a thick specimen
- $\circ~$  Use an electron gun with high energy spread and a thick specimen
- $\circ~$  Use an electron gun with medium energy spread and a thick specimen
- $\circ~$  Use an electron gun with low energy spread and a thin specimen



# Nanomicroscopy center

Prof. Janne Ruokolainen Director 2005 - 2020 New manager Jani Seitsonen 1. 1. 2021 → Aalto University, Otanano





# Nanomicroscopy Center ?



## Introduction

The new Nanomicroscopy Center is large microscopy clusters (even compared to other European centers). The center is now housing various microscopes able to characterize hard materials down to atomic resolution, and soft materials including biomaterials down to molecular resolution.

- Started in operation  $2008 \rightarrow$
- $\bullet$  Center area 1220  $m^2$  / 740  $m^2$
- Center for various different *high resolution microscopy* techniques (currently >10 different high-resolution microscopes: 5 TEM's, 3 SEM's, AFM's, 3 STM's.. + New FIB-SEM 2019
- Instrument investments (until now..) >15 M€

## **Key Instruments:**

• First lens *aberration corrected* transmission electron microscope in Finland with approximately 1 Å resolution *(JEOL 2200FS)* 

(new 300 kV microscope will replace this 2024)

• First *Liquid helium cryo*-transmission electron microscope in Finland (operating at -255 °C or -187 °C) *(JEOL 3200FSC)* 

## Equipment and their new values, and purchase years

Transmission electron microscopes (TEM)	Value	Year
1) 120kV TEM Tecnai 12	350 k€	2004
2) Double Cs corrected sub-Ångstrom 200kV (S)TEM, EDX, EELS	>2000 k€	2009
3) Liquid Helium 300kV cryo-TEM, EELS	>2000 k€	2009
4) 200kV FEG (S)TEM, EDX	>1300 k€	2016
5) 200kV FEG TEM (moved from Department of Materials Science and Engineering 2016)	_	
Scanning electron microscopes (SEM)		
1) JEOL 7500F FEG-SEM + EDX	400 k€	2008
2) Zeiss Sigma FEG-SEM +EDX (2021)	300 k€	2011
3) Zeiss E-SEM	150 k€	2011
4) dual beam FIB-SEM (EDX, EBSD, Cryo-SEM 2021)	~1400 k€	2019
Scanning probe microscopy (AFM, STM)		
1) Veeco Dimension 5000 AFM	300 k€	2008
2) RHK UHV-750 variable temperature STM (UHV-STM)	500 k€	2005 - 2009
3) Createc LT-STM low-temperature STM	460 k€	2012
4) cryo UHV-STM	580 k€	2012
X-ray Scattering		
1) Small Angle X-ray Scattering (SAXS)	550 k€	2006 - 2008
2) Wide and Medium Angle X-ray Scattering (WAXS/MAXS)	450 k€	2008 - 2016
3) 2D-microfocus XRD	500 k€	2016
4) New-SAXS small angle X-ray setup	500 k€	2020

### sample preparation equipment etc.

Cryo vitrification (3), ultra microtoming (2), ion-milling, polishing, plasma cleaner...

TEM holders, cross section polisher,, ...

2000 k€ 2009 -

Total: >15 M€

## Microscopy Resolution – Different Microscopes

SEM from cm scale  $\rightarrow$  up to sub nanometer resolution TEM from micrometer scale  $\rightarrow$  up to sub Ångström resolution



Nanoparticles, carbon nanotubes Lipids, polymer-amphiphile, liquid crystals Block copolymers Polymer blends, colloids...

- 0.1 nm –
- 1 10 nm
- 10 100 nm
- $50 \text{ nm} 10 \mu \text{m}$

## **Electron microscope resolution:**

**In ideal case: Theorethical resolution** (Classical Rayleight criteria)

$$r_{th} = \frac{0.61 * \lambda}{\mu \sin \beta} \approx \frac{0.61\lambda}{\beta}$$

Light microscope wavelenght  $\sim 400 - 600$  nm Electron wavelenght 300 kV  $\sim 0.002$  nm !!!

**Spherical aberration** 

$$r_{sph} = C_s \beta^3$$

Chromatic aberration

$$r_{chr} = C_c \frac{\Delta E}{E_0} \beta$$

AT

**Example Jeol 3200FSC cryo-TEM:** 300 kV, Cs = 4.1 mm, Cc = 3.4 mm**\rightarrow point resolution ~2.6** Å

**Jeol 2200FS** Cs = 1.0 mm Cc = 1.4 mm, 200 kVPoint resolution 2.3 Å (without Cs correctors)

**Jeol 2800** 200kV Cs = 0.7mmPoint resolution 2.0 Å



$$r_{total} = \sqrt{(r_{th})^2 + (r_{sph})^2 + (r_{chr})^2 + ...}$$

If spherical aberration could be corrected  $Cs \sim 0 \rightarrow resolution < 1 \text{ Å}$ 

If also chromatic aberration could be corrected or minimized  $\rightarrow$  resolution < 0.5 Å

## Spherical aberration in Hubble Space Telescope



Analysis of the flawed images showed that the cause of the problem was that the primary mirror had been ground to the wrong shape. Although it was probably the most precisely figured mirror ever made, with variations from the prescribed curve of only 10 nanometers, ^{[it was too flat at the edges by about 2200 nanometers (mirror diameter 2.4 meters..)}. This difference was catastrophic, introducing severe spherical aberration a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.



# *Ernst Ruska and Max Knoll builtv*the first electron microscope in 1931 (Nobel Prize to Ruska in 1986)





FIGURE 1.1. The electron microscope built by Ruska (in the lab coat) and Knoll, in Berlin in the early 1930s.

#### TABLE 1.2 Electron Properties as a Function of Accelerating Voltage

Accelerating voltage (kV)	Non-relativistic wavelength (nm)	Relativistic wavelength (nm)	Mass $(\times m_0)$	Velocity (× 10 ⁸ m/s)
100	0.00386	0.00370	1.196	1.644
120	0.00352	0.00335	1.235	1.759
200	0.00273	0.00251	1.391	2.086
300	0.00223	0.00197	1.587	2.330
400	0.00193	0.00164	1.783	2.484
1000	0.00122	0.00087	2.957	2.823

## High voltage TEM (typically 400 kV -3 MV)

In early years the resolution was increased by using higher voltage TEM - since the wavelenght is smaller and therefore resolution is potentially better..



#### TABLE 1.2 Electron Properties as a Function of Accelerating Voltage

Accelerating voltage (kV)	Non-relativistic wavelength (nm)	Relativistic wavelength (nm)	Mass $(\times m_0)$	Velocity (× 10 ⁸ m/s)
100	0.00386	0.00370	1.196	1.644
120	0.00352	0.00335	1.235	1.759
200	0.00273	0.00251	1.391	2.086
300	0.00223	0.00197	1.587	2.330
400	0.00193	0.00164	1.783	2.484
1000	0.00122	0.00087	2.957	2.823

$$r_{th} = \frac{0.61^* \lambda}{\mu \sin \beta} \approx \frac{0.61 \lambda}{\beta}$$

(in TEM  $\beta$  is small)



Nowadays these high voltage TEM's are mostly used for material radiation damage research and some special applications where thick samples are required for imaging (high voltage electrons can penetrate thicker samples .. i.e even some micrometer thick samples .. Normal TEM's require typically <100 nm or even < 10 nm samples for high resolution work





Hitachi 3.5MeV (S)TEM

Microscopes are quite big - Notice the operator standing there..

Base F

## In NMC we have 4 (5) TEM's In this picture the two oldest TEM's 120 kV TEM and 200 kV TEM are shown



FEI Tecnai T12 Installation 2003 (Will be replaced with new 200kV TEM in 2024)



FEI Tecnai F20 Installation 1999? (Material science laboratory (Chem) and 2016  $\rightarrow$  moved to NMC) (now permanently broken... and will be thrown away..)
## NMC: newest 200 kV TEM and 300 kV Cryo-TEM





#### NMC highest resolution Double Cscorrected (S)TEM (to be replaced with new 300 kV TEM in 2024)

Cc corector <u>2020: 0.4</u> Å Aberration correctors A Cs corrector NMC slightly **E. Microscopes** n below 1 Å 10 g S 100 t High voltage r 1000 0 ^m 10000 **Optical Microscopes** 100000 1800 1840 1880 1920 1960 2000 2040 oek Year 75 ( aft

Installation 2009: TEM and STEM resolution slightly below 1 Å

Now best resolution for commercial microscopes is 0.4 Å



## Brief introduction to the electron microscopy



(Cs corrected ~ 0.5 - 1 Å)

(Cs corrected ~ 0.5 - 1 Å or even better)

# Scanning Electron Microscopy (SEM)

Primary e-beam (1-30kV)

Back scattering electron detector (high energy electrons)

Secondary electron detector (low energy electrons)

The scanning electron microscope (SEM) uses a focused beam of high-energy electrons (typically 1kV to 30 kV) to generate a variety of signals at the surface of solid specimens. The signals that derive from electronsample interactions reveal information about the sample morphology (texture), chemical composition, and crystalline structure and orientation of the materials. Electron beam is scanned across the surface point by point and each point signal is collected, and 2-dimensional image is generated.

## Scanning Electron Microscopy (SEM)

#### Surface technique:

Relatively high resolution –

Best case even <1nm (0.4 nm)

- Large depth of field (Large sample focus range)
- Low and high magnifications
- Large samples
- Possibility to microanalysis (EDX)
- Relatively easy sample preparation

   (normally thin metal coating needed gold/palladium, platinum, carbon, etc.)
- Samples in vacuum (same as TEM)
- Limited to surface studies (except if STEM option is available but then very thin samples needed... since voltage is max. 30 kV)



## SEM examples: Fly head and leg





Large depth of field: sample is focus on different heights at the same time



## Nanomicroscopy center has 3 SEM's

This SEM has been the primary training and research SEM at NMC since 2008.



1.)



JEOL JSM-7500FA Information Card

Manufacturer	JEOL
Model	JSM-7500F (later upgraded to JSM-7500FA)
Emitter	Cold FEG
Installation	2008
Detectors	In-column SE
	ETSE
	BSE (2 segment)
	EDX (JEOL)
Resolution	0.6 nm @ 30 kV
	1.4 nm @ 1 kV
Acceleration voltage	0.1 - 30 kV
Probe current	-
<b>Operating modes</b>	High vacuum (10 ^{-₅} Pa)
Stage	Motorized 5 axis (compucentric)
	X & Y 50 mm
	Z 25 mm
	T -5 - 70°
	R 360°
Specimen size	max. 100 mm diameter
	max. 10 mm height

This SEM is going to be the primary training SEM for Nanomicroscopy Center SEM users.







Zeiss Sigma VP In	nformation Card
-------------------	-----------------

Manufacturer	Zeiss	
Model	Σigma VP	
Emitter	Schottky FEG	
Installation	2011	
Detectors	In-column SE	
	ETSE	
	BSE (5 segment)	
	VPSE	
	STEM	
Resolution	1.3 nm @ 20 kV	
	2.8 nm @ 1 kV	
	2.5 nm @ 30 kV (VPSE)	
Acceleration voltage	0.1 - 30 kV	
Probe current	4 pA - 20 nA	$\neg$
Operating modes	High vacuum (10 ^{-₅} Pa)	_ 0.0
	Variable pressure (2 - 133 Pa, N₂)	Thi
Stage	Motorized 5 axis (compucentric)	red
	X & Y 125 mm	effe
	Z 50 mm	cor
	T -10 - 90°	and
	R 360°	with
Specimen size	max. 250 mm diameter	
	max. 145 mm height	

0.02 – 1.3 mbar This mode we can reduce the charging effects for non conducting samples and even do imaging without metal/carbon coating

The vapor pressure of ice and water between -30° and 30° (mb = millibar). (Berner and Berner 1987)



## Scanning probe microscopy (SPM) historically called AFM )



- a) Contact mode
- b) Non-contact mode
- c) Tapping mode (tip is oscillating on surface)



In AFM we use sharp tip to scan the sample surface to obtain information about surface topography and other properties (chemical, mechanical hardness, electrical etc.)







# **Examples AFM probes**

Standard Tip radius typically 8-10 nm (cost 10 -20 euros per each)





Super sharp tips: Tip radius is typically 1nm (~100 €)



High aspect ratio tips: The length of the high aspect portion of the tip is larger than  $1.5 \ \mu m$ 

## NMC instruments: AFM: Veeco Dimension 5000 SPM (installed 1/2008)



- Originally designed for semiconductor imaging.
- Capable of loading samples up to 350 mm in diameter.
- Large scanning area  $\sim 90 \text{ x } 90 \text{ } \mu\text{m}$ .
- Automatic measurement for up to 100 preselected areas.
- High pixel-density image capture 5120 x
  5120 points.

High resolution, easy to use, large samples..

Unfortunately currently broken ..

But Micronova and Chemistry department has other good AFM's

## AFM image examples - Polymer films:



Topography (height) and composition imaging (soft and hard domains) – in tapping mode imaging one can get at the same time the surface topographical information and contrast due to mechanical properties (example hard of soft domains)

## Brief introduction to the electron microscopy



Nowadays it is possible to obtain atomic resolution images even from low atomic number materials such as Carbon nanotubes and single graphene sheets..





High resolution TEM image from Gold nanoparticles

## Another examples: Heterostructured GaAs nanowires

- GaAs nanowires (NWs)
- Molecular beam epitaxial (MBE) growth
- Pure GaAs NWs: Wurtzite (WZ) structure (纤锌矿结构,六方相)
- Partially alloyed with Sb: GaAs_{1-x}Sb_x insert : Zinc bl

**ZB**) structure (闪锌矿结构, 立方相)



#### Sample: Hanne Kauko, NTUT

- W7 ZB W7
  - WZ and ZB coexist;
  - Ga and As columns well separated, 1.55 Å;
  - Ga and As columns has different intensities.

Sample: Hanne Kauko, NTUT



• Wurtzite structure [11-20] orientation

W7

ZB

• Zinc Blende structure [110] orientation

#### **TEM** characterization of **III-V** nanowires (HAADF STEM)



Dhaka et al., Nano Letters, 2013, 13 (8), pp 3581-3588

### Elemental Mapping of cross-sectional GaAs nanowires

by analysing the X-ray signals generated in the sample – atomic composition can be analysed (EDX-spectroscopy)



Sample: Veer Dhaka, Aalto U.

Atomic resolution elemental analysis is also possible with modern high resolution microscopes..



Atomic-level-resolution EDX elemental map of a gallium arsenide monocrystal <011>

# 3D tomography – Why important?

(Jani Seitsonen will give lecture on this topic later in the spring)

# TEM image is projection from $3D \rightarrow 2D$

 Micrograph represents a projection image of the specimen. So features at different depths in the structure are all superimposed. Hence cannot generate a 3D structure by simple visual inspection.



# TEM image is projection from $3D \rightarrow 2D$

 Micrograph represents a projection image of the specimen. So features at different depths in the structure are all superimposed.
 Hence cannot generate a 3D structure by simple visual inspection.





Another example of projection from  $3D \rightarrow 2D$ 



Another example of projection from  $3D \rightarrow 2D$ 



When 2D-projections are not enough: TOMOGRAPHY (or single particle reconstruction)

# Principle of electron tomography:

DATA COLLECTION

RECONSTRUCTION



3D object => 2D-projections

2D-projections => 3D-reconstruction

# **Cryo-Tomography**

#### Case study: Cryo-EM structure of M-PMV VLPs

Sample: *in vitro* assembled Virus-Like Particles of Mason-Pfizer Monkey Virus

(Pasi Laurinmäki, Institute of Biotechnology University of Helsinki )

## Normal TEM image is a projection from 3D specimen

100 nm

#### 3D cryo-EM: aligned tomographic tilt series



Low-dose series of *in vitro* assembled proCANC M-PMV particles

Diameter of the large round hole is about 2um

Dense dots are 10nm gold particles used as markers to align the images

Then we just take images from -70 to + 70 degree tilt and do 3D recontruction



## Surface representation of the reconstructed density

# Serial sections through the reconstructed density







Using similar 3D imaging methods also the structure of the **SARS-CoV-2** virus was resolved (single particle reconstruction)



## Sample preparation for TEM: THIN SPECIMENS

A major limitation of the TEM is we need thin specimens.

Methods to prepare thin specimens exist for almost all materials, and we talk about them specific lecture. But as a general rule, the thinning processes that we use do affect the specimens, changing both their structure and chemistry. So you need to be aware of the drawbacks of specimen preparation and learn to recognize the artifacts introduced by standard preparation methods.

#### Ultramicrotoming, ion milling, Focused ion beam, cryo sample preparation etc..







Planar Surface Preparation for SEM Cross Section Viewing New Dual beam focused ion beam system in Nanomicrosopycenter (installation finnished by June 2019): Main applications TEM sample preparation, cross-section imaging and 3D imaging ... (also nano fabrication and IC device failure analyses)







Here is the example of crosssection imagin: FIB column is used to cut the cross-section and SEM column for imaging
## Example: FIB cross-section imaging from soldering tin particles





TEM sample preparation using Focused ion beam..

FIB is very usefull for hard materials thin cross-section sample preparation – after final polishing << 100 nm meter thick sample can be done



