
Analysis, Random Walks and Groups

Exercise sheet 2: solutions

January 30, 2023

These model solutions are the same models used by Tuomas in Manchester, but
some exercises are omitted, attached into another exercises or separeted into
separate exercises. I (Kai) might have commented somewhere with red color if
I think it is in place. Corrections and improvements are welcome.

Homework exercises: Return these for marking to Kai Hippi in the tuto-
rial on Week 3. Contact Kai by email if you cannot return these in-person,
and you can arrange an alternative way to return your solutions. Remember to
be clear in your solutions, if the solution is unclear and difficult to read, you
can lose marks. Also, if you do not know how to solve the exercise, attempt
something, you can get awarded partial marks.

1. (5pts)

Let µα = αδ0 + (1 − α)δ1 on Z5 for some 0 < α ≤ 1. For which α is µα
ergodic? Explain your answer. Compute d(µα ∗ µα, λ) as a function of α.

Solution 1.

If α = 1, the support of µα is {0}, which is a trivial subgroup of Zp, in par-
ticular by the subgroup characterisation of ergodicity µα = δ0 cannot be ergodic.

If α < 1, the support of µα is {0, 1}. Since 5 is a prime number, the only
subgroups of Z5 are {0} and Z5 and so {0, 1} cannot be a coset of any of these
subgroups. Hence by the subgroup characterisation µα is ergodic.

The convolution

µα ∗ µα(t) =
∑
s∈Zp

µα(t	 s)µα(s) = αµα(t) + (1− α)µα(t	 1).

We have t	 1 = 0 when t = 1 and t	 1 = 1 when t = 2. Thus we have

µα(t	 1) = αδ0(t	 1) + (1− α)δ1(t	 1) = αδ1(t) + (1− α)δ2(t).
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Hence the convolution

µα ∗ µα(t) = α[αδ0(t) + (1− α)δ1(t)] + (1− α)[αδ1(t) + (1− α)δ2(t)],

which equals to

α2δ0(t) + 2α(1− α)δ1(t) + (1− α)2δ2(t).

By the L1 identity for the total variation distance we have

d(µα ∗ µα, λ) =
1

2

∑
t∈Zp

|µα ∗ µα(t)− λ(t)|,

which, since µα ∗ µα(t) = 0 when t 6= 0 and when t = 1 we have

|α2 − 1/5|+ |2α(1− α)− 1/5|+ |(1− α)2 − 1/5|+ 2/5

2
,

which is our function of α.

2. (5pts)

Prove that if µ, ν : Zp → [0, 1] are probability distributions, then the entropy

H(µ ∗ ν) ≤ H(µ) +H(ν).

Hint: Use the convexity of ϕ(x) = −x log(x) (you do not need to prove the
convexity).

Solution 2.

Convexity (Here should be concavity, you may just without a proof here that
it gives subadditivity) of ϕ(x) = −x log x gives the subadditivity of ϕ:

ϕ(
∑
j

xj) ≤
∑
j

ϕ(xj)

for all finite sums of xj ≥ 0. We have by the definition of entropy and convolu-
tion that

H(µ ∗ ν) = −
∑
t∈Zp

µ ∗ ν(t) logµ ∗ ν(t)

=
∑
t∈Zp

−
[ ∑
r∈Zp

µ(t	 r)ν(r)
]

log
[ ∑
s∈Zp

µ(t	 s)ν(s)
]

=
∑
t∈Zp

ϕ
( ∑
r∈Zp

µ(t	 r)ν(r)
)

≤
∑
t∈Zp

∑
r∈Zp

ϕ(µ(t	 r)ν(r))

=
∑
t,r∈Zp

−µ(t	 r)ν(r) log(µ(t	 r)ν(r)).
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Here

−µ(t	r)ν(r) log(µ(t	r)ν(r)) = −µ(t	r)ν(r) logµ(t	r)−µ(t	r)ν(r) log ν(r).

Thus∑
t,r∈Zp

−µ(t	r)ν(r) log(µ(t	r)ν(r)) = −
∑
t,r∈Zp

µ(t	r)ν(r) logµ(t	r)−
∑
t,r∈Zp

µ(t	r)ν(r) log ν(r).

In the first sum on the right hand side, for any fixed t ∈ Zp, use change of
variable r 7→ t	 r, that is, set u = t	 r, which makes r = t	 u. Thus

−
∑
t∈Zp

∑
r∈Zp

µ(t	 r)ν(r) logµ(t	 r) = −
∑
t∈Zp

∑
u∈Zp

µ(u)ν(t	 u) logµ(u)

= −
∑
u∈Zp

µ(u) logµ(u)
∑
t∈Zp

ν(t	 u)

Moreover, as ν is a probability distribution, we have, for every t ∈ Zp, that∑
t∈Zp

ν(t	 u) = 1. Hence

−
∑
u∈Zp

µ(u) logµ(u)
∑
t∈Zp

ν(t	 u) = −
∑
u∈Zp

µ(u) logµ(u) = H(µ).

Similarly

−
∑
t,r∈Zp

µ(t	 r)ν(r) log ν(r) = −
∑
r∈Zp

ν(r) log ν(r)
∑
t∈Zp

µ(t	 r) = H(ν).

Hence we have

−
∑
t,r∈Zp

µ(t	 r)ν(r) logµ(t	 r)−
∑
t,r∈Zp

µ(t	 r)ν(r) log ν(r) = H(µ) +H(ν),

which gives the claim.

Further exercises: Attempt these before the tutorial, they are not marked
and will be discussed in the tutorial. If you cannot attend the tutorial, but
want to do the attendance marks, you can return your attempts to these before
the tutorial to Kai. Here Kai will not mark the further exercises, but will look
if an attempt has been made and awards the attendance mark for that week’s
tutorial.

3.

Prove the following identities for the convolution: for all f, g, h : Zp → C we
have:

(a) Commutativity: f ∗ g = g ∗ f

(b) Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h

(c) Linearity: if α, β ∈ C, then f ∗ (αg + βh) = αf ∗ g + βf ∗ h
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Solution 3.a

For every t ∈ Zp, the map s 7→ t	 s is a bijection Zp → Zp. Thus

f∗g(t) =
∑
s∈Zp

f(t	s)g(s) =
∑
s∈Zp

f(t	(t	s))g(t	s) =
∑
s∈Zp

f(s)g(t	s) = g∗f(t).

Solution 3.b

We have

[f ∗ (g ∗ h)](t) =
∑
s∈Zp

f(t	 s)(g ∗ h)(s)

=
∑
s∈Zp

f(t	 s)
∑
r∈Zp

g(s	 r)h(r)

=
∑
r∈Zp

h(r)
∑
s∈Zp

f(t	 s)g(s	 r)

Given r ∈ Zp, by the change of variable v = s	 r, we have

t	 s = (t	 r)	 (s	 r) = (t	 r)	 v

so ∑
s∈Zp

f(t	 s)g(s	 r) =
∑
v∈Zp

f((t	 r)	 v)g(v) = f ∗ g(t	 r).

Thus∑
r∈Zp

h(r)
∑
s∈Zp

f(t	 s)g(s	 r) =
∑
r∈Zp

f ∗ g(t	 r)h(r) = [(f ∗ g) ∗ h](t).

Solution 3.c

We have

[f ∗ (αg + βh)](t) =
∑
s∈Zp

f(t	 s)(αg + βh)(s)

= α
∑
s∈Zp

f(t	 s)g(s) + β
∑
s∈Zp

f(t	 s)h(s)

= αf ∗ g(t) + βf ∗ h(t)

= [αf ∗ g + βf ∗ h](t).
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4.

Let µ be a probability distribution on Z4, which is not a Dirac mass, and
assume that the support

spt(µ) = {t ∈ Z4 : µ(t) > 0}

is a coset of a proper non-trivial subgroup of Z4. Is there a limit

µ∞ = lim
n→∞

µ∗n?

What is it? No proofs necessary, just have a think how to maybe prove this.

Solution 4.

The only proper subgroup of Z4 is Γ = {0, 2}. The only coset of this is
Γ ⊕ 1 = {1, 3}. If we consider first the case µ is concentrated on Γ, as µ is
not a Dirac mass, then µ∗n can only have a limit

ν =
1

2
δ0 +

1

2
δ2

that is, ν is the uniform measure on the subgroup Γ

Formal proof : If µ is concentrated on Γ, then we could identify Γ with Z2

as follows. First of all, group theoretically Γ is isomorphic to Z2, that is there
exists a bijection ϕ : Z2 → Γ such that ϕ(a⊕ b) = ϕ(a)⊕ϕ(b), a, b,∈ Z2. Then

ν = ϕ∗λ,

where λ is the uniform measure on Z2 and ϕ∗λ is the push forward distri-
bution (recall earlier exercises on Wasserstein distance), which is defined by

ϕ∗λ(A) = λ(ϕ−1A), A ⊂ Γ.

Since the push forward under inverse ϕ−1 of µ, that is, ϕ−1∗ µ is ergodic (it is
not concentrated on any proper subgroup of Z2 as it is not a Dirac mass), the
iterated convolutions

(ϕ−1∗ µ)∗n → λ

as n→∞ in Z2 by the subgroup characterisation of ergodicity. Since λ = ϕ−1∗ ν,
this gives that µ∗n → ν in Γ so the limit µ∞ = ν.

As for the coset Γ⊕ 1 we have an issue: if µ is supported on Γ⊕ 1 = {1, 3}
the support

spt(µ ∗ µ) = spt(µ)⊕ spt(µ) = {1, 3} ⊕ {1, 3} = {0, 2}

On on the other hand

spt(µ∗µ∗µ) = spt(µ)⊕spt(µ)⊕spt(µ) = {1, 3}⊕{1, 3}⊕{1, 3} = {0, 2}⊕{1, 3} = {1, 3}

and again
spt(µ ∗ µ ∗ µ ∗ µ) = {1, 3} ⊕ {1, 3} = {0, 2}
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so the support of µ∗n alternates between {0, 2} and {1, 3}, which are disjoint.
In particular for even n and odd n we get measures µ∗n that have never the
same support. Thus it is impossible for µ∗n to have a limit as n→∞.

5.

(a) Prove that for all A,B ⊂ Zp the cardinalities

max{|A|, |B|} ≤ |A⊕B| ≤ |A||B|.

(b) Give examples of sets A,B ⊂ Zp such that

|A⊕B| = max{|A|, |B|}.

(c) Give examples of sets A,B ⊂ Zp which are not Zp such that

|A⊕B| = |A||B|.

Solution 5.a

Define a function P : Zp × Zp → Zp,

P (t, s) = t⊕ s.

Then
A⊕B = P (A×B)

so as P is a function we have

|P (A×B)| ≤ |A×B| = |A||B|.

To the other direction, if t ∈ A, then the map s 7→ t⊕ s, s ∈ B, is an injection
B 7→ A⊕B. Hence

|B| ≤ |A⊕B|.

Similarly
|A| ≤ |A⊕B|

so the claim follows.

Solution 5.b

We can set A = {0} and B = {1}. Then A⊕B = {1} so |A⊕B| = 1 = |B| = |A|.
A harder example could be if p = 4 and

A = {0, 2} = B.

Then
A⊕B = {0, 2} = A = B

so
|A⊕B| = |A| = |B|.
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Solution 5.c

We can set A = {0} and B = {1}. Then A ⊕ B = {1} so |A ⊕ B| = 1 =
1× 1 = |A||B|.
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