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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems about stability FEA:

  Stability of structures and principle of virtual work for large displacements

   Aim of stability analysis and stability FEA

 Beam and plate element contributions for stability analysis
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BUCKLING EXPERIMENT
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EXPERIMENT VS. MODEL

Method cr  [N]F
Stability analysis 175

Nonlinear analysis 177
Experiment 177

Horizontal disp. [m]
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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INITIAL AND DEFORMED DOMAINS

Assuming equilibrium on the initial domain , the aim is to find a new equilibrium on the

deformed domain  , when e.g., external forces acting on the structure are changed.

The local forms of the balance laws are concerned with the deformed domain which depends

on the displacement! Precise treatment of large displacements requires modifications in

stress and strain concepts of linear theory.

P
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4.1 STRAIN MEASURES

A rigid body motion should not induce strains! A proper strain measure with this respect is

always non-linear in displacement components (small strain | |h h h   )

Linear strain 1h
h

  


 c2 ( )u u    
  

Green-Lagrange 21[( ) 1]
2

h
h

  


 c c2 ( ) ( )u u u u       
    

Superscript  refers to the initial geometry and subscript c denotes conjugate tensor. At the

initial geometry, material coordinate system is usually assumed to be Cartesian so that

/ / /i x j y k z         
 

.

capital
epsilon

epsilon
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GENERALIZED HOOKE’S LAW

Under small displacement assumption, the model for an isotropic homogeneous material

can be expressed as

Strain-stress: 1
1

1 1 [ ]
1

xx xx

yy yy

zz zz

E
E

   
   

  


     
           
         

 and 1
2

xy xy

yz yz

zx zx
G

 

 

 

   
   

   
   
   

Strain-displacement:
/
/

/

xx x

yy y

zz z

u x
u y

u z






    
   

     
       

and

/ /
1 / /
2

/ /

xy x y

yz y z

zx z x

u y u x

u z u y

u x u z







       
   

        
          

Above, E is the Young’s modulus,  the Poisson’s ratio, and / (2 2 )G E   the shear

modulus. Strain and stress are assumed to be symmetric.
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GREEN-LAGRANGE STRAIN

A rigid body motion should not induce strains! The proper strain measures with this respect

are non-linear in displacement components

2 2 2

2 2 2

2 2 2

( / ) ( / ) ( / )
1 ( / ) ( / ) ( / )
2

( / ) ( / ) ( / )

x y zxx xx

yy yy x y z

zz zz x y z

u x u x u x

u y u y u y

u z u z u z






                                 
                  

,

( / )( / ) ( / )( / ) ( / )( / )
1 ( / )( / ) ( / )( / ) ( / )( / )
2

( / )( / ) ( / )( / ) ( / )( / )

xy xy x x y y z z

yz yz x x y y z z

zx zx x x y y z z

u x u y u x u y u x u y

u y u z u y u z u y u z

u z u x u z u x u z u x







                  
                        

                      






.

All measures boil down to the definition of linear displacement analysis when strains and

rotations of material elements are small!
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EXAMPLE. Consider a bar whose left end is simply supported (joint) and right end is free

to move. Displacement of the typical particle ( , )x y of the bar

(1 )cos 1 sin
(1 )sin cos 1

x

y

u x
u y

  
  

       
         

describes rotation with angle   and length increase h h  . Determine the linear strain

component xx and the Green-Lagrange strain component xx .

Answer 21
2xx       when 1   and (1 )cos 1xx       when 1 
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 Partial derivatives of the displacement components are

/ (1 )cos 1
/ (1 )sin

x

y

u x
u x

 
 

     
       

  and
/ sin
/ cos 1

x

y

u y
u y




    
       

.

 Linear and Green-Lagrange axial strain components

(1 )cos 1x
xx

u
x

  


   


  and 2 2 21 1 1( ) ( )
2 2 2

yx x
xx

uu u
x x x

 
 

     
  

. 

The former depends strongly on the rotation angle even when   is small although pure

rotation should not cause any strains. The latter does not depend on the rotation at all.

Also, for small length changes, the Green-Lagrange strain is close to the relative change

of length /h h    .
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ELASTIC MATERIAL

Under the assumption of large displacements and small strains the Green-Lagrange strain

measure does not differ much from the linear setting with small displacements and small

strains. Constitutive equations

1
1 1

1

xx xx

yy yy

zz zz

S
S

C
S

 
 
 

      
           
          

 and 1
2

xy xy

yz yz

zx zx

S

S
G

S

   
   
    
      

,

with material parameters C  (which replaces E ),  , and / (2 2 )G C    are same as those

of the linear case, are assumed to simplify the setting. Also, the uni-axial and two-axial

(plane) stress and strain relationships follows just by using strains instead of engineering

strains and C  instead of E .
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 STRAIN COMPONENTS FOR BUCKLING ANALYSIS

In buckling analysis of beams and plates, the setting is simplified by using the displacement

assumptions of the small displacement theory and only the most significant terms of the

Green-Lagrange axial strain expressions:

Beam: 2 21 1( ) ( )
2 2xx xx

dv dw
dx dx

      and xx xxS C  ,

Plate:

2

2

( / )
1 ( / )
2

2( / )( / )2

xx xx

yy yy

xy xy

w x

w y
w x w y






                         
                  

  and  
2

xx xx

yy yy

xy xy

S
S E

S


   
          
         

.

In large displacement theory, also the displacement assumptions need to be modified to keep

the idea of rigid body motion of cross-sections (beams) or line segments (plates).
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4.2 BUCKLING OF BEAMS AND PLATES

In stability analysis, the goal is to find the critical value crp of parameter p  (force, load,

displacement etc.) so that the zero and non-zero bending solutions may co-exist.

w

l

2h 2h

tAl

d
X

Y
1

3

4

2610

812

7

59

11
1314

wAl

lAl

x
yz

x

y
z

p
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NON-LINEAR COUPLING OF THE MODES

Buckling analysis considers the coupling of the bar/ thin-slab and bending modes. There,

the bending mode is affected by the bar/thin slab mode but not the other way round.

Equilibrium equations for the Bernoulli beam model and Kirchhoff plate model bending

modes change to

4 2

4 2 0d w d wEI N
dx dx

  x ,

4 4 4 2 2 2

4 2 2 4 2 2( 2 ) 2 0xx xy yy
w w w w w wD N N N

x yx x y y x y
     

     
      

( , )x y  ,

assuming that the axial or in-plane stress resultants of the bar mode or thin-slab mode are

constants (as one of the assumptions).

Non-linear coupling of the
thin slab and plate bending
modes
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 The simplified buckling analysis also considers the effect of the normal force on

bending. By considering the equilibrium of a beam element in xz plane

0dN
dx

 ]0, [x L ,

0dM dwQ N
dx dx

   ]0, [x L ,

0z
dQ f
dx

  ]0, [x L ,

where 2 2/M EId w dx   and /N EAdu dx . The more precise equilibrium equations

couple the bar and bending modes (bending mode is affected by the bar mode but not

the other way around).
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 The table by George William Herbert - Own work, after Table C.1.8.1 in Steel

Construction Manual, 8th edition, 2nd revised printing, American Institute of Steel

Construction, 1987, CC BY-SA 2.5, is based on the equilibrium equation

4 2

4 2 0d w d wEI N
dx dx

   ]0, [x L ,

for the xz plane bending with a compressive N p  . The different values in the table

are due to different boundary and symmetry conditions imposed on the generic solution

sin( ) cos( )p pw a bx c x d x
EI EI

    .

https://commons.wikimedia.org/w/index.php?curid=1211310
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BUCKLING LOAD OF BEAM 2
cr 2( )

EIp
KL
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 VIRTUAL WORK DENSITIES

The refined virtual work densities contain also the work done by the axial force in bending.

The simplified forms of Green-Lagrange strains in derivation of virtual work densities give

additional contributions (coupling terms)

Beam:
T

sta / /
/ /

d v dx dv dx
w N

d w dx dw dx





   
    

   
 where duN EA

dx
 ,

Plate:
T

sta / /
/ /

xx xy

xy yy

N Nw x w x
w

w y N N w y





       
              

,  
/
/

/ /

xx

yy

xy

N u x
N t E v y

u y v xN


             
          

.

Coupling affects the bending mode only as the variations are concerned with the transverse

displacements of the bending modes.
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 Derivation based on the virtual work of the external axial force, is also possible. The

axial displacement of the free end of a cantilever due to the bending only can be obtained

by considering an inextensible material element of length x . The length change in the

direction of the force is given by (Taylor series 2cos( ) 1 / 2x x  )

cos yL x x      

2 21 11 cos ( )
2 2y y

dL dw
dx dx

      

2
0

1( ) ( )
2

L dwu L dx
dx

  

0
( )

L d w dwu L dx
dx dx
   .
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 Virtual work of the external force due to the bending effect is therefore given by

sta
0

( )
L d w dwW N u L N dx

dx dx
    .

 In the simultaneous bending in both directions, the length change of an inextensible

material element x  in the axial direction is given by

2 2 2 21 1 1cos cos (1 )(1 ) ( )
2 2 2y z y z y zL x x x x x                 

1 ( )
2

dw dw dv dvL x
dx dx dx dx

    
0

( ) ( )
L d w dw d v dvu L dx

dx dx dx dx
    

Hence, the coupling term is the sum of coupling terms of the planar problems!
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4.3 STABILITY FEA

  Model a structure as a collection of beam, plate, etc. elements. Derive the element

contributions int ext staeW W W W       in terms of the nodal displacement and

rotation components of the structural coordinate system.

  Sum the element contributions to end up with the virtual work expression of the structure
e

e EW W  . Re-arrange to get T ( )W   a R a .

  Use the principle of virtual work 0W   a  and the fundamental lemma of variation

calculus for n a   to deduce the equilibrium equations ( ) 0R a . Finally, find the

values of the loading parameter p  making the solution non-unique. In practice, solve for

the bar/thin slab modes from the linear part and use the solution to express the axial and

in-plane stress resultants of the non-linear terms in terms of p .
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BAR MODE

In terms of the nodal axial forces 1xN , 2xN  and nodal displacements 1xu , 2xu  virtual work

expressions of the internal and external forces take the forms

T
1 1int

2 2

x x

x x

u N
W

u N




   

    
   

   where 1 1

2 2

1 1
1 1

x x

x x

N uEA
N uh

    
        

,

T
1ext

2

1
12

x x

x

u f hW
u




   

    
  

.

x
EA

h
z
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BENDING MODE (xz-plane)

In terms of the shear forces 1zQ , 2zQ , bending moments 1yM , 2yM , displacements 1xu ,

transverse displacements 1zu , 2zu , and rotations 1 2,y y  , virtual work expression of internal

forces

T
1 1

1 1int

2 2

2 2

z z

y y

z z

y y

u Q
M

W
u Q

M








   
   
       
   
      

  where

1 1
2 21 1

3
2 2

2 22 2

12 6 12 6

6 4 6 2
12 6 12 6

6 2 6 4

z z

y yyy

z z

y y

h hQ u
M EI h h h h
Q h h uh
M h h h h





      
    
            

        

.

xEIyy

h
z
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BENDING-BAR COUPLING (xz-plane)

Assuming a cubic approximation to ( )w x  of nodal displacements/rotations 1zu , 2zu , 1y ,

and 2y , and a linear approximation to ( )u x  of the nodal displacements 1xu , 2xu

T
1 1

2 21 1sta

2 2
2 22 2

36 3 36 3

3 4 3
36 3 36 330

3 3 4

z z

y y

z z

y y

h hu u

h h h hNW
u h h uh

h h h h


 



 

      
    
              

         

,  where 2 1x xu uN EA
h




ux2

x

h
z

ux1
E,A,Iyy
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EXAMPLE 4.1 Consider a simply supported beam loaded by a compressive axial force p

acting on the right end. Assuming that displacement is confined to the xz plane, use a

single beam element to determine the buckling force crp . Cross-section properties A, I  and

Young’s modulus E  are constants.

Answer cr 212 EIp
L

 (exact to the model 2
cr 2

EIp
L

  )

L
Z,z

X,x
p1 2
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 The non-zero nodal displacements/rotations are 1Y , 2Y , and 2Xu . Virtual work

expression for the beam 1 int staW W W     and the point force 2W  are (here

2 1 2( ) / /x x XN EA u u h EAu L   )

T T
1 1 1 11

2 2
2 2 2 2

4 2 4 1
2 4 1 430

Y Y Y Y
X X

Y Y Y Y

EA EI NLW u u
L L

   
 

   
          

                       
,

2
2XW p u   .

 Virtual work expression is sum of the element contributions

T
2 2

2
1 1

2 2

0 0 0 0 0
1[ 0 4 2 0 4 1 ) 0 ]

30
0 2 4 0 1 4 0

X X
X

Y Y

Y Y

u EA u p
EAuW EI EI

L
EI EI


  

 

         
                    
                 

.

 Principle of virtual work and the fundamental lemma of variation calculus imply that
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2
2

1

2

0 0 0 0 0
1( 0 4 2 0 4 1 ) 0 0

30
0 2 4 0 1 4 0

X
X

Y

Y

EA u p
EAuEI EI

L
EI EI




       
               
             

.

 The remaining task is to solve the (non-linear) equations for the values of the loading

parameter p  and the corresponding modes. Solving for the axial displacements (and

thereby the axial forces) of the beams allowed to buckle as functions of the loading

parameters is always the first step. The first equation gives

2
1 0XEAu p
L

   2X
pLu
EA

  .

 When the solution is substituted there, the remaining equations simplify to the

homogeneous form
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1

2

4 2 4 1
( ) 0

2 4 1 430
Y

Y

EI pL
L




     
          

.

 A non-trivial solution (zero rotations satisfy the equations always) is possible only if the

matrix in parenthesis is singular

2 24 2 4 1
det( ) (4 4 ) (2 ) 0

2 4 1 430 30 30
EI pL EI pL EI pL
L L L

   
           



2
{12,60}p

EI
L

 .

 The smallest of the values is the critical one

cr 212 EIp
L

 . 
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 Stability analysis by the Mathematica code gives
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EXAMPLE 4.2 Consider the truss shown in which elements 1 and 3 are modelled as bars

and element 2 as a beam. Determine the critical value of force F for buckling of the beam

element. Cross-sectional area of element 1 and 3 are 8A. Cross sectional area of element

2 is A  and the second moment of area I. Young’s modulus of the material is E. Assume that

3 2Y Y   .

Answer cr 236 EIF
L



F

x
z

xz

z
x

L

L

1

3

2
X

Z

4

1

2
3

4
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 The non-zero nodal displacements/rotations are 2Y , 3 2Y Y   , 2Zu , and 3Zu . Virtual

work expressions of the elements are (here the axial force is given by

2 3 3 2( ) / ( ) /x x Z ZN EA u u L EA u u L    )

T
T 3 3

3 31
2 2

2 2

1 0 0
1 18 0 0 0

0 1 1 08 0 0 0

Z Z
Z Z

Z Z

Y Y

u u
u uE A EAW u u

LL




 
 

     
                                       

,

T
3 3

2
2 2

22 2

0
1( 0

0 0 4 / 3

Z Z

Z Z

Y Y

u EA EA u
W u EA EA u

L
EI NL


 

 

    
          

        

,

T
T 3 3

3
2 2

2 2
2 2

0 0 0
0 01 18 0 1 0

1 18 0 0 0

Z Z

Z Z
Z Z

Y Y

u u
E A EAW u u

u u LL


 


 

     
                                    

,
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T
3

4
2 2

2

0

0

Z

Z Z

Y

u
W u F u F


  



   
        
   
   

.

 Virtual work expression is the sum of element contributions

T
3 3

2 2
22 2

2 0 0
1( 2 0 )

00 0 4 / 3

Z Z

Z Z

Y Y

u EA EA u
W u EA EA u F

L
EI NL


 

 

      
               

            

.

 Principle of virtual work and the fundamental lemma of variation calculus imply that

3

2
2 2

2 0 0
1 2 0 0

00 0 4 / 3

Z

Z

Y

EA EA u
EA EA u F

L
EI NL 

     
           

         

  where 3 2( )Z Z
EAN u u
L

  .
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 The remaining task is to solve the (non-linear) equations for the values of the loading

parameter F  making the solution non-unique (the corresponding modes might be of

some interest also). The first two equations give

3

2

2 1 0
0

1 2
Z

Z

uEA
u FL

     
         

 3

2

1
23

Z

Z

u FL
u EA
   

   
  

.

 When the solution is substituted there, the axial force expression and the remaining third

equation give

3 2( )
3Z Z

EA FN u u
L

    
2

2
1(4 ) 0
3 3 Y

FLEI    .

 A non-trivial solution 2 0Y   is possible only if
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2
4 0

9
FLEI    cr 236 EIF

L
  . 

 Stability analysis by the Mathematica code gives
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4.4 ELEMENT CONTRIBUTIONS

Virtual work expressions for the beam and plate elements combine virtual work densities of

the model and approximation depending on the element shape and type. To derive the

expression:

   Start with the virtual work densities intw  , staw  , and extw  of the formulae collection.

  Represent the unknown functions by interpolation of the nodal displacement and

rotations (see formulae collection). Substitute the approximations into the density

expressions.

  Integrate the virtual work density over the domain occupied by the element to get W .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal

displacement and rotations in terms of shape functions. In stability analysis, shape functions

depend on x, y, and  z.

Approximation Tu N a

Shape functions T
1 2{ ( , , ) ( , , ) ( , , )}nN x y z N x y z N x y zN 

Parameters T
1 2{a a a }na 

Nodal parameters a { , , , , , }x y z x y zu u u     may be just displacement or rotation

components or a mixture of them (as with the beam model).

always of the same form!
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BEAM MODEL

Coupling term: sta d v dv d w dww N N
dx dx dx dx
       ,  where duN EA

dx
 .

The additional coupling term is part of the virtual work density of internal forces
int sta ext( )w w w w          and assumes that 0y z yzS S I   . The coupling of the bar

and bending modes is the most significant non-linear term.

zf

x

h
z
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 The coupling terms of the bending and bar modes follow from the large displacement

virtual work expression and displacement assumptions. For the beam model

/ /xu u zdw dx ydv dx   , ( )yu v x ,  and ( )zu w x . Considering only the most

significant terms of the Green-Lagrange axial strain expression

2 2
2 2

2 2
1 1( ) ( )
2 2xx

du d w d v dv dwE z y
dx dx dxdx dx

       and xx xxS CE ,

  Integration of int
xx xxw E S   over the cross-section gives the virtual work densities

of the bar mode, bending modes, and the additional coupling term. Assuming that

0y z yzS S I   , the additional coupling term takes the form

sta d v dv d w dww N N
dx dx dx dx
       ,  where duN EA

dx
 .



4-40

BENDING-BAR COUPLING (xz-plane)

Assuming that 0v  , 0  , a cubic approximation to ( )w x  in terms of nodal

displacements/rotations 1zu , 2zu , 1y , and 2y , and a linear approximation to ( )u x  in terms

of the nodal displacements 1xu , 2xu ,

T
1 1

2 21 1sta

2 2
2 22 2

36 3 36 3

3 4 3
36 3 36 330

3 3 4

z z

y y

z z

y y

h hu u

h h h hNW
u h h uh

h h h h


 



 

      
    
              

         

,  where 2 1x xu uN EA
h


 .

ux2

x

h
z

ux1
E,A,Iyy
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   Virtual work density of the bending-bar mode coupling term in the xz plane is given
by

sta d w dww N
dx dx
      where duN EA

dx


and the cross-sectional area A  and Young’s modulus E  may depend on x. Element

approximations (simplest possible) are 2 1/ ( ) /x xdu dx u u h  and

T2

2

3 2

2

1

1

2

2

( ) 2

( )

(3 2

( )

)

( )

1
z

y

z

y

u

w

h x h x

h h x x

h x x

h x x

uh





             
   
   



















 
  
 
 

T
1

1

2

3
2

6
3

6
3

1

2

z

y

z

y

h x x
h h x h x

h

u

dw
ud x xh

h x
x

h x





  
  





 
       
   
 

 


  

.

   Integration over the domain occupied by the element gives
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sta sta
0 0
h h d w dwW w dx N dx

dx dx
      ( duN EA

dx
  is constant here) 

T
1 1

2 21 1sta

2 2
2 22 2

36 3 36 3

3 4 3
36 3 36 330

3 3 4

z z

y y

z z

y y

h hu u

h h h hNW
u h h uh

h h h h


 



 

      
    
              

         

, where 2 1x xu uN EA
h


 . 
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BENDING-BAR COUPLING (xy-plane)

Assuming a cubic approximation to ( )v x  in terms of nodal displacements/rotations 1yu , 2yu

, 1z , and 2z , and linear approximation to ( )u x  in terms of nodal displacements 1xu , 2xu ,

T
1 1

2 2
1 1sta

2 2
2 2

2 2

36 3 36 3

3 4 3
36 3 36 330

3 3 4

y y

z z

y y

z z

h hu u

h h h hNW
u uh hh

h h h h



 




 

    
    

                
         

, where 2 1x xu uN EA
h


 .

ux2, Fx2ux1, Fx1

x
E,A,Izz

h
y
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PLATE MODEL

Virtual work density combines the thin-slab and plate bending modes. Assuming that the

material coordinate system is placed at the geometric mid-plane, bending mode is affected

by the thin slab mode but not vice versa. The additional coupling term for stability analysis

Coupling:
T

sta / /
/ /

xx xy

yx yy

N Nw x w x
w

w y N N w y





       
              

, where  
xx xx

yy yy

xy xy

N
N t E

N







   
         
   
      

depends on the in-plane stress resultants xxN , yyN , and xy yxN N  of the thin-slab mode.

The additional coupling term is part of the virtual work density of internal forces
int sta extw w w w         . As stability term affects only the bending mode, dependence

of the stress resultants on the loading parameter can be obtained from a thin-slab problem.
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 The coupling term of the plate bending and thin-slab loading modes follows from the

generic non-linear virtual work density of the internal forces and the kinematic

assumptions of the Kirchhoff plate model /xu u z w x    , /yu v z w y    ,  and

( , )zu w x y . If only the most significant terms are accounted for, Green-Lagrange strain

and the corresponding second Piola-Kirchhoff stress components

2 2 2

2 2 2

2

/ ( / )/
1/ / ( / )
2

/ / 2( / )( / )2 2 /

xx

yy

xy

w x w xu x
v y z w y w y

u y v x w x w yw x y

                                       
                              

,

 
2

xx xx

yy yy

xy xy

S
S E

S


   
          
         

.
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  Assuming that the material coordinate system is placed at the geometric mid-plane,

integration of the virtual work density gives the virtual work density of the thin-slab

mode, virtual work density of plate bending mode, and the coupling term (considering

only the most significant terms)

T
sta / /

/ /
xx xy

yx yy

N Nw x w x
w

w y N N w y





       
              

,

 where the in-plane stress resultants

 
/
/

/ /

xx

yy

xy

N u x
N t E v y

u y v xN


             
          

.
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EXAMPLE 4.3 Determine the critical value of the in-plane loading crp  making the plate

of the figure to buckle. Use the approximation 2
0( , ) ( / )(1 / )(1 / )w x y a xy L x L y L   .

Assume that the edge conditions are such that solution to the in-plane stress resultants is

given by xxN p   and 0yy xyN N   (solution to the thin-slab problem).

Answer
3

cr 22 (1 )
11
3

Etp
L 




   (exact
3

cr 22

2

(1 )3
p Et

L






).

x,X

y,Y
L

L

E, ν, ρ, t pp
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 Assuming that the material coordinate system is chosen so that the linear plate bending

and thin slab modes decouple, the plate model virtual work densities of the bending

mode and the coupling term are given by ( xxN p   and 0yy xyN N   )

T2 2 2 2

int 2 2 2 2

2 2

/ /1 0
/ 1 0 /

0 0 (1 ) / 22 / 2 /

w x w x

w w y D w y

w x y w x y

 
  




                       
                

 where
3

212 1
t ED





,

T
sta / /

/ /
xx xy

yx yy

N Nw x w x w ww p
w y N N w y x x

 


         
                

.

 When the approximation is substituted there, virtual work expressions of the plate

bending mode and that of the coupling between the thin-slab and bending modes

simplify to
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0 0
int int

0 0 2
22
45

L L
W w d dy Da a

L
x      ,

0
sta sta

0 00
1

90
L L

W w dx pdy a a     .

 Virtual work expression is the sum of the two parts

int st
0 0

a
2

22 1( )
45 90

DaW aW W p
L

       .

 Principle of virtual work 0W   a  and the fundamental lemma of variation calculus

give

0 02
22 1( ) 0
45 90

Da p a
L

W      0a  02 022 1( )
45 90

D p a
L

  .
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For a non-trivial solution 0 0a  , the loading parameter needs to take the value

cr 2 2

3

2
1144
3 )(1

D Etp
L L 




  . 

 The problem can be solved numerically by using

the Reissner-Mindlin plate model and the

Mathematica code. Assuming parameter values

210GPaE  , 0.33  , 1mL  , and 1mmt  ,

the one parameter approximation gives
1

cr 0.86 Nmp   whereas the solution on the

mesh shown gives 1
cr 0.78 Nmp  .
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STABILITY ANALYSIS OF TRUSS SIMPLIFIED

In hand calculations, one may use the fact that the bar model predicts the axial forces

correctly when beams of a truss are connected with joints. Then, the first step is a linear

displacement analysis for finding the displacements of the nodes and thereby the axial forces

( )N p  as functions of the loading parameter. After that, the buckling loads of each beam

under compression follows from the buckling criterion (N is negative in compression)

2
2( ) EIN p

L
 

for a simply supported beam. The first beam to buckle (or the smallest p given by the

conditions above) defines the critical load crp .
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EXAMPLE 4.4 A beam truss is loaded by a vertical point force having magnitude F and

acting in the positive or negative direction of the Z-axis. Determine the critical load

magnitude crF  for buckling of beam 1 or 2 of the truss. Cross-sectional area of element 1 is

A and that for element 2 8A, Young’s modulus E is constant, and the second moment of

area is I for both beams. The beams are connected by frictionless joints.

Answer
2

cr 28
EIF
L


   when 0F  .

X
Z

L

3

21

2

1

L
F

3

x

x

z

z
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 The relationships between the nodal displacement components in the material and

structural systems are 1 0xu   and 2 2x Xu u . Element contribution 1W  to the virtual

work expression of the structure is

T
1

2 2
2 2

0 01 1 0
( )

1 1 0 X X
X X

EA EAW u u
u uL L

 


      
                

.

 For element 2, 3 0xu   and 2 2 2( ) / 2x X Zu u u  . Element contribution takes the form

T
2

2 2 2 2

0 01 1 01 8 1( )
1 1 02 2 2X Z X Z

E AW
u u u uL


 

      
               



2
2 2 2 2( )( )X Z X Z

EAW u u u u
L

      .
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 Virtual work expression of the point force follows from the definition of work. The

direction may be up or down and hence F  may also be negative (which means up)

3
2ZW u F  .

 Virtual work expression of a structure is obtained as the sum of the element contributions

2 2 2 2 2 2 2( )( )X X X Z X Z Z
EA EAW u u u u u u u F
L L

          

T
2 2

2 2

2 1 0
( )

1 1
X X

Z Z

u uEAW
u u FL





      

        
      

.

 Using the principle of virtual work 0W   a and the fundamental lemma of variation

calculus
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2

2

2 1 0
0

1 1
X

Z

uEA
u FL

    
     

    
 2

2

1
2

X

Z

u LF
u EA

   
   

  
.

 For buckling of beam 1, the axial force should be compression (negative) and therefore

the external force should be acting downwards.

2 1 2( )x x X
EA EAN u u u F
L L

      2
cr 2

EIF
L

   when 0F  .

 For buckling of beam 2, the axial force should be compression (negative) and therefore

the external force should be acting upwards. When 0F 

2 3 2 2
8 ( ) 2 ( ) 2

2 x x X Z
E A EAN u u u u F

LL
      

2

cr 28
EIF
L


  . 


