
MEC-E8001 Finite Element Analysis, week 5/2023

1. Virtual work expression of a beam, which takes into account the bar and bending modes and the
coupling between them, gives a non-linear equation system for the axial and transverse displace-
ment. Determine the critical load crp  causing the beam to buckle if the equation system is given
by
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2. Determine the buckling force crp  and the buckled shape of the structure
shown by using one beam element. Displacements are confined to the xz 
plane. Parameters E, A, and I are constants.
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3.  Determine the buckling force crp  of the beam shown by using one beam
element. Displacements are confined to the xz plane. The cross-section
and material properties A, I, and E are constants.

Answer  cr 2
4 13 2 31
3

EIp
L



4.  The structure shown consist of two beams, each of
length L. As beam 2 is much stiffer than beam 1, the
setting is simplified by considering beam 2 as a rigid
body. Displacements are confined to the xz plane.
Cross-section properties of beam 1 are A  and I  and
Young’s modulus of the material is E . Determine
the buckling load crp .
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5. Beam structure of the figure is loaded by opposite forces of magnitude p
acting on nodes 2 and 3. Determine the buckling force crp  of the structure
using two beam elements. Displacements are confined to the xz plane. The
cross-section properties of the beam A , I and Young’s modulus of the ma-
terial E are constants.
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6.  The simply supported uniform beam shown is di-
vided into two identical beam elements, each of
length L/2. Displacements are confined to the xz 
plane. Cross-section properties are A  and I  and
Young’s modulus of the material E . Determine the
buckling load crp . Assume that rotation angles sat-
isfy 1 3Y Y    and 2 0Y  .
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7. Find the density cr causing the beam of the figure to buckle in xz 
plane. Start with the virtual work density taking into account the inter-
action of the bar and bending modes. Choose first 0w   in the virtual
work density to solve for the axial displacement and the axial force N .
After that, choose 0u   to find the virtual work expression taking into
account the internal and coupling parts.
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8. The plane frame of the figure consists of a rigid body 3
and beam elements 1 and 2. The joints at nodes 2 and 3
are frictionless. Determine the critical value of the force
F  acting on the rigid body at distance L [0,1] 
from node 3 making the frame to buckle laterally. The
cross-section properties A and I and Young’s modulus
of the material E are constants.
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9.  Determine the critical value of force F causing
some beam of the truss shown to buckle. First, use
the bar model to solve for the nodal displacements
and thereby the axial forces as functions of the
loading F (assumed to be positive). After that, use
criterion 2 2( ) /N F EI h  to find the first beam
to buckle and the critical value crF . Cross-sectional
areas of beams 2 and 3 are 8A  and that of beam
1 2A . The second moments of cross-sections I and
the Young’s modulus E of the material are constants.
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10.  Determine the critical value of the in-plane loading

crp  making the plate shown to buckle. Use

0( , ) sin( / )sin( / )w x y a x L y L   as the approxi-
mation and assume that xxN p  , 0yyN  , and

0xyN  . Problem parameters E,  , ρ and t are con-
stants. Integrals of sin and cos satisfy
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Virtual work expression of a beam, which takes into account the bar, bending, and the coupling of
the modes, gives a non-linear equation system for the axial and transverse displacement. Determine
the critical load crp  causing the beam to buckle if the equation system is given by
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Solution
Although the equation system is non-linear, it can be solved in two steps for the critical load. Finding
the normal forces (or axial displacements) as function of the load parameter is the first step. The first
equation gives
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With this expression, the second equation simplifies to
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A non-trivial solution 2 0Zu   is possible only if
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Determine the buckling force crp  and the buckled shape of the structure shown
by using one beam element. Displacements are confined to the xz plane. Pa-
rameters E, A, and I are constants.

Solution
The non-zero displacement/rotation components of the structure are 2 2y Y   and 2 2x Xu u . In
this case, the normal force in the beam N p   can be deduced without calculations on the axial
displacement and it is enough to consider only the bending and coupling terms of the virtual work
expression. As buckling is confined to the xz plane
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Principle of virtual work and the fundamental lemma of variation calculus imply
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The shape function associated with 2Y is 2 3 2/ /N x L x L   . Therefore, the buckled shape is
given by (save an arbitrary multiplier)
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Determine the buckling force crp  of the beam shown by using one beam ele-
ment. Displacements are confined to the xz plane. The cross-section and mate-
rial properties A, I, and E are constants.

Solution
The non-zero displacement/rotation components of the structure are 2 2y Y  , 2 2z Zu u  and

2 2x Xu u . As the normal force in the beam

N p 

can be deduced directly, it is enough to consider only the bending and coupling terms of the virtual
work expression. For buckling in the xz plane
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Principle of virtual work and the fundamental lemma of variation calculus imply (notice the scaling
of the rotation and the force which make the two matrices dimensionless and simplify the eigenvalue
calculations)
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The structure shown consist of two beams, each of length
L. As beam 2 is much stiffer than beam 1, the setting is
simplified by considering beam 2 as a rigid body. Dis-
placements are confined to the xz plane. Cross-section
properties of beam 1 are A  and I  and Young’s modulus
of the material is E . Determine the buckling load crp .

Solution
The axial forces in the beams follow directly from a free body diagram and it is enough to consider
virtual work associated with the bending and interaction between bar and bending modes
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Also, as beam 2 is considered as rigid, virtual work expression of internal forces vanish and modelling
uses a kinematical constraints  and . Let us choose A to be node 3 and
B as node 2. Then

2 3Z Yu L   and 2 3Y Y  .

Although axial displacement is non-zero, it is not needed as the axial force in the structure N p 
(negative means compression) can be deduced without calculations on the axial displacement.

The internal force and coupling parts of beam 1 take the forms ( 1 0zu  , 1 0y  , 2 2 3z Z Yu u L 
, 2 2 3y Y Y    )
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Virtual work expression of the structure is the sum of the internal and stability parts
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Principle of virtual work and the fundamental lemma of variation calculus imply that
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In stability analysis the aim is to find a non-zero equilibrium solution so 3 0Y   and the multiplier
needs to vanish for a solution. Therefore, the buckling load is given by
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Beam structure of the figure is loaded by opposite forces of magnitude p acting
on nodes 2 and 3. Determine the buckling force crp  of the structure using two
beam elements. Displacements are confined to the xz   plane. The cross-section
properties of the beam A , I and Young’s modulus of the material E are con-
stants.

Solution
The axial forces in the beams follow directly from a free body diagram and it is enough to consider
virtual work associated with the bending and interaction modes. The non-zero displacement/rotation
components of the structure are 2Y   and 3Y .

For beam 1, 2 2y Y   and 3 3y Y  . The axial force acting on the element N p   (negative means
compression) follows from a free-body diagram. Therefore
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For beam 2, 2 2y Y   and the axial force 0N  . Therefore sta 0W   and
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Virtual work expression of structure is the sum of element contributions
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Principle of virtual work and the fundamental lemma of variation calculus imply that
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In stability analysis the aim is to find the critical values (smallest of them typically) of the load pa-
rameter p such that the solution becomes non-unique. As the equilibrium equations are homogeneous,
non-zero solution is obtained only if the matrix (above) is singular:
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The simply supported uniform beam shown is divided
into two identical beam elements, each of length L/2. Dis-
placements are confined to the xz plane. Cross-section
properties are A  and I  and Young’s modulus of the ma-
terial E . Determine the buckling load crp . Assume that
rotation angles satisfy 1 3Y Y    and 2 0Y  .

Solution
The axial force in the beams follows directly from a free body diagram and it is enough to consider
the virtual work associated with bending and interaction modes. The non-zero displacements and
rotations of the structure are 1Y , 2Zu  and 3 1Y Y   .

For beam 1, 1 1y Y   and 2 2z Zu u . The axial force N p   (negative means compression) follows
from a free-body diagram. Here / 2h L
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For beam 2, 2 2z Zu u , 3 3 1y Y Y      and the axial force N p  . As / 2h L
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Virtual work expression of structure is sum of the element contributions
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Principle of virtual work and the fundamental lemma of variation calculus imply that
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As the equilibrium equations are homogeneous, non-zero solution is obtained only if the matrix
(above) is singular:
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Find the density cr causing the beam of the figure to buckle in xz plane.
Start with the virtual work density taking into account the interaction of the
bar and bending modes. Choose first 0w   in the virtual work density to
solve for the axial displacement and the axial force N . After that, choose

0u   to find the virtual work expression taking into account the internal
and coupling parts.

Solution
The displacements/rotations of the structure are 2 2x Xu u , 2 2z Yu u and 2 2y Z   . The starting
point is the virtual work density
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which takes into account the bar and bending modes and their interaction. Approximations to axial
displacement u and transverse displacement w ( /x h   and h L ) are
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In the first step 0w  . When the approximation to u is substituted there, virtual work density sim-
plifies to
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Principle of virtual work and the fundamental lemma of variation calculus imply that (notice that the
actual axial force is linear)
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In the second step 0u  . When the approximation to w  is substituted there, the virtual work density
becomes (virtual work expression is available also in the formulae collection)
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Principle of virtual work and the fundamental lemma of variation calculus imply (with
/ 2N L gA  )
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In stability analysis, the goal is to find the value of the loading parameter such that the solution is not
unique. This is possibly only if
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The plane frame of the figure consists of a rigid body 3 and
beam elements 1 and 2. The joints at nodes 2 and 3 are
frictionless. Determine the critical value of the force F
acting on the rigid body at distance L [0,1]   from
node 3 making the frame to buckle laterally. The cross-
section properties A , I and Young’s modulus of the ma-
terial E are constants.

Solution
The non-zero displacement and rotation components are 2 3Z Zu u , 2 3Y Y  , 2Xu , and 3Xu . The
vertical contact forces between the beams at nodes 2 and 3 follow from the equilibrium equations of
the rigid body 3. Therefore, the axial force in beam 1 is N F   and that in beam 2 (1 )N F  
(both compression) and it is enough to consider only the bending of beams 1 and 2.

For beam 1, the non-zero displacement/rotation components are (omitting the axial one as only the
bending mode is considered) 2 2z Zu u  and 2 2y Y 
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For beam 2, the non-zero displacement/rotation components are (again omitting the axial one as only
the bending mode is considered) 3 2 3z Z Zu u u   and 3 3 2y Y Y   
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Virtual work expression of the structure is the sum of element contributions i.e
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A non-trivial solution is possible only if the matrix inside parenthesis is singular
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Determine the critical value of force F causing some
beam of the truss shown to buckle. First, use the bar
model to solve for the nodal displacements and thereby
the axial forces as functions of the loading F (assumed
to be positive). After that, use criterion

2 2( ) /N F EI h  to find the first beam to buckle and
the critical value crF . Cross-sectional areas of beams 2
and 3 are 8A  and that of beam 1 2A . The second mo-
ments of cross-sections I and the Young’s modulus E of
the material are constants.

Solution
In the first step, the structure is considered as bar structure to find the nodal displacements as functions
of the loading. Virtual work expression of the bar element needed in the displacement analysis
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depend on the cross-sectional area A , Young’s modulus E , bar length h , force per unit length of the
bar xf  in the direction of the x  axis. The non-zero displacement/rotation components of the struc-
ture are 2Xu , 3Xu , and 3Zu . Virtual work expression of the elements are (no distributed forces)
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Force 4:
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Force 5:

T
2

5
3

3

0
0

X

X

Z

u F
W u

u


 



   
       
   

  

Virtual work expression of a structure is sum of the element contributions
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.

Principle of virtual work and the fundamental lemma of variation calculus imply the linear equation
system and thereby the solution to nodal displacements
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The axial forces of the beams become (notice that the expression depends on the displacement com-
ponents in the material coordinate systems of the beams)
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The critical loading of the truss as predicted by criterion 2 2/N EI h  in which N  is the magni-
tude of the compressive axial force
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The critical load of the truss is the smallest of the critical loads calculated for the beams
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Beam 1 is likely to buckle first.



Determine the critical value of the in-plane loading crp
making the plate shown to buckle. Use

0( , ) sin( / )sin( / )w x y a x L y L   as the approxima-
tion and assume that xxN p  , 0yyN  , and 0xyN 
. Problem parameters E,  , ρ and t are constants. Inte-
grals of sin and cos satisfy, e.g.,
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Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple in the linear analysis and that the in-plane stress resultants are known (from linear displace-
ment analysis, say), it is enough to consider the virtual work densities of plate bending mode and the
coupling of the bending and thin-slab modes
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where the elasticity matrix of plane stress
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Approximation to the transverse displacement and its derivatives are
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When the approximation is substituted there, virtual work densities of the internal and forces and that
of the coupling simplify to ( xxN p   and 0yy xyN N   )
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Virtual work expressions are integrals of the densities over the domain occupied by the plate/element
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Virtual work expression
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Principle of virtual work 0W  0a  and the fundamental lemma of variation calculus give
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For a non-trivial solution 0 0a  , the loading parameter needs to take the value
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