MEC-E8001 Finite Element Analysis, week 5/2023

1. Virtual work expression of a beam, which takes into account the bar and bending modes and the
coupling between them, gives a non-linear equation system for the axial and transverse displace-
ment. Determine the critical load p., causing the beam to buckle if the equation system is given

by

_ 1] sUPp+BlEAuk, |,
513 |60Eluy» +6LEAUy SU75 |

El

Answer p. =10 z

2. Determine the buckling force p., and the buckled shape of the structure @
shown by using one beam element. Displacements are confined to the xz-—
plane. Parameters E, A, and | are constants.

El X\2 X . .
Answer pg, =30F, W:k(f) (1—I) (k is arbitrary)

3. Determine the buckling force p., of the beam shown by using one beam :_
element. Displacements are confined to the xz—plane. The cross-section @ :
and material properties A, 1, and E are constants. L

El 4
Answer pg = ?5(13— 2\/5)

4. The structure shown consist of two beams, each of
length L. As beam 2 is much stiffer than beam 1, the
setting is simplified by considering beam 2 as a rigid
body. Displacements are confined to the xz —plane.
Cross-section properties of beam 1are A and | and
Young’s modulus of the material is E. Determine
the buckling load pg, .

420 EI

Answer pq = ET) 2



Beam structure of the figure is loaded by opposite forces of magnitude p
acting on nodes 2 and 3. Determine the buckling force p;, of the structure
using two beam elements. Displacements are confined to the xz—plane. The
cross-section properties of the beam A, | and Young’s modulus of the ma-
terial E are constants.

El

Answer pg = ZOF

The simply supported uniform beam shown is di-

vided into two identical beam elements, each of 1 @ 2 @ 3 p
length L/2. Displacements are confined to the xz— ] X
plane. Cross-section properties are A and | and
Young’s modulus of the material E. Determine the > L/2 L/2
buckling load p., . Assume that rotation angles sat-

iSfy @12—@3 and @2 =0.

240 EI
13+ 2431 12 JDX

Answer pq =

Find the density pg, causing the beam of the figure to buckle in xz - 1 9
plane. Start with the virtual work density taking into account the inter- @
action of the bar and bending modes. Choose first sw =0 in the virtual L
work density to solve for the axial displacement and the axial force N . L X
After that, choose 6u =0 to find the virtual work expression taking into
account the internal and coupling parts.

120  El
13+24/31 AgL®

Answer pq =

The plane frame of the figure consists of a rigid body 3 e :
and beam elements 1 and 2. The joints at nodes 2 and 3 L
are frictionless. Determine the critical value of the force @ @
F acting on the rigid body at distance aL « €[0,]] L L [
from node 3 making the frame to buckle laterally. The :
cross-section properties A and | and Young’s modulus I_z |_z
of the material E are constants. 3 :

Answer F =ﬂ§(13—2ﬁ) ~497E!
1?3 L2



Determine the critical value of force F causing
some beam of the truss shown to buckle. First, use
the bar model to solve for the nodal displacements
and thereby the axial forces as functions of the
loading F (assumed to be positive). After that, use
criterion N(F) = 7z2El /h? to find the first beam
to buckle and the critical value F, . Cross-sectional
areas of beams 2 and 3 are +/8A and that of beam
1 2A. The second moments of cross-sections | and
the Young’s modulus E of the material are constants.

Answer F = %7:2 % (beam 1 buckles)

. Determine the critical value of the in-plane loading

per Mmaking the plate shown to buckle. Use
w(X,y) =agsin(zx/L)sin(zy/L) as the approxi-
mation and assume that Ny, =-p, N,, =0, and
N,y = 0. Problem parameters E, v, p and t are con-
stants. Integrals of sin and cos satisfy

L . . X,\.,. X L L .X . X L
Io sin(iz")sin(jz--)dx = - & and .[o cos(iz ) cos(jz-)dx == 5.

i E (22
121-,2 L

Answer p, =4



Virtual work expression of a beam, which takes into account the bar, bending, and the coupling of
the modes, gives a non-linear equation system for the axial and transverse displacement. Determine
the critical load p., causing the beam to buckle if the equation system is given by

_ 1] sUPp+BlEAux, |
513 |60Eluy» +6LEAUy SU75 |

Solution

Although the equation system is non-linear, it can be solved in two steps for the critical load. Finding
the normal forces (or axial displacements) as function of the load parameter is the first step. The first
equation gives

5L3p+5L2EAUX2 =0 < El,lxz-l‘pzo < Uyxo :—p—L.
L EA
With this expression, the second equation simplifies to
60E|U22 +6LEAUx2U22 =0 = (60El —6LEAE—;)UZZ =0 < (60E| —6L2 p)u22 =0

A non-trivial solution uz, # 0 is possible only if

60EI -6L°p=0 < p:lO%. &



Determine the buckling force p,, and the buckled shape of the structure shown
by using one beam element. Displacements are confined to the xz—plane. Pa- @
rameters E, A, and | are constants.

Solution

The non-zero displacement/rotation components of the structure are 6y, =&, and U, =uy,. In
this case, the normal force in the beam N =-p can be deduced without calculations on the axial
displacement and it is enough to consider only the bending and coupling terms of the virtual work
expression. As buckling is confined to the xz —plane

07 [12 -6L -12 —6L] (36 -3L -36 -3L] [ g
EI|-6L 4> 6L 2L°| p|-3L 4% 3L -L*||0
oW =— — -—— ) =
0 [ "13|-12 6L 12 6L | 30L|-36 3L 36 3L[]O
56 5 6L 2L% 6L 4L?| 3L -2 3L 42| (&

El .2 p , 2
SW = =56 »(—- 412 ———412)8,, .
2(L3 30L ) 2

Principle of virtual work and the fundamental lemma of variation calculus imply

ElI > p 2
— 4L ———4L°)4,, =0.
(|_3 30L 2

A non-trivial solution &, # 0 is obtained only if

El 2 P 42_ _
F4L —BO—L4L —0 = pCI’_30

El
z €

The shape function associated with &/, is N =—x?/L+x3/L2. Therefore, the buckled shape is
given by (save an arbitrary multiplier)



Determine the buckling force p., of the beam shown by using one beam ele- @
ment. Displacements are confined to the xz—plane. The cross-section and mate- %

rial properties A, 1, and E are constants.

Solution
The non-zero displacement/rotation components of the structure are 6y, =6 ,, U, =uz, and

Uyp =Uyx o . As the normal force in the beam
N=-p

can be deduced directly, it is enough to consider only the bending and coupling terms of the virtual
work expression. For buckling in the xz —plane

0 \7 [12 -6L -12 —6L] (3 -3L —36 -3L] [ g

_ ] o | EIf-6L 4 6L 21%| p |-3L 4% 3L —|_2) ol
Suzy[ 13| -12 6L 12 6L | 30L|-36 3L 36 3L | |ug,
56 5 6L 2L% 6L 4L?]| 3L -2 3L 4% (&2

W - {&JZZ}T E (12 6L p[36 3L ){uzz}

S8 a) "L°|6L 42| 30L|[3L 412 |&2)
Principle of virtual work and the fundamental lemma of variation calculus imply (notice the scaling
of the rotation and the force which make the two matrices dimensionless and simplify the eigenvalue

calculations)

12 6 36 3] [u 2
( -1 ) Z2 1 _0 where 1=—— pL

6 4 3 4| L&, 30El
A non-trivial solution is obtained only if

6 36 3] - 2
det({6 4} 1{3 4})—(12—362)(4—42)—(6—31) -0 = 1—45(13i2\/ﬂ).

The smallest of the values is the critical one

_H 60(13 2./31) 248 &



The structure shown consist of two beams, each of length

L. As beam 2 is much stiffer than beam 1, the setting is
simplified by considering beam 2 as a rigid body. Dis-
placements are confined to the xz —plane. Cross-section
properties of beam 1are A and I and Young’s modulus

of the material is E . Determine the buckling load pg, .

Solution

The axial forces in the beams follow directly from a free body diagram and it is enough to consider
virtual work associated with the bending and interaction between bar and bending modes

T
ou,q

50,1
ou 72
50,

ou,y
50y,
5U22
50y
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Also, as beam 2 is considered as rigid, virtual work expression of internal forces vanish and modelling
uses a kinematical constraints g = lp +6a x Pag and g = 0, Let us choose A to be node 3 and

B as node 2. Then

Uzp =63l and &, =63,

Although axial displacement is non-zero, it is not needed as the axial force in the structure N =—p
(negative means compression) can be deduced without calculations on the axial displacement.

The internal force and coupling parts of beam 1 take the forms (u,; =0, 61 =0, u;p =uz, =6 3L

, Oyp =6 =063)

0 17 [12 -6L

switt—_) O El|-6L 4L
-~ |LsGs| 183]-12 6L

ot 3 6L 212
o 17 [3 -3
W 0 p|-3L 4L?
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Virtual work expression of the structure is the sum of the internal and stability parts



i El 46
SW = oW M 4 s sta =~ 3(28-—— - PL& 3.

Principle of virtual work and the fundamental lemma of variation calculus imply that

El 46
28— ——pL =0.
( T30 P )63
In stability analysis the aim is to find a non-zero equilibrium solution so & 3 =0 and the multiplier

needs to vanish for a solution. Therefore, the buckling load is given by

_30 0 El _420El

Per =76 2 23 12



Beam structure of the figure is loaded by opposite forces of magnitude p acting
on nodes 2 and 3. Determine the buckling force p., of the structure using two
beam elements. Displacements are confined to the xz — plane. The cross-section
properties of the beam A, | and Young’s modulus of the material E are con-
stants.

Solution

The axial forces in the beams follow directly from a free body diagram and it is enough to consider
virtual work associated with the bending and interaction modes. The non-zero displacement/rotation
components of the structure are &, and & 3.

Forbeam 1, 6y, =&, and 6,3 = 6 3. The axial force acting on the element N =—p (negative means
compression) follows from a free-body diagram. Therefore

o7 [12 -6L -12 —6L]( g

swint __Jo%2( El-6L 4% 6L 2L |6y, ot Tﬂ 4 27(6,
Tl o[ B|-12 6L 12 6L || 0 [ |o&s| L|2 4|l&s]
ot 3 6L 212 6L 412 ||%s
o017 [3 -3L -36 -3L|(g
swea - 0%z N |-3L 47 3L -L% |6y _[o&, TIO_L 4 -1](&
0 [ 30L|-36 3L 36 3L || 0| |o&3] 30|-1 4||&;
b3 3L 12 3L 4% |l4s
giving
.
SWl=swint . syt — _ 08 (ﬂ 4 2 _pL 4 —1) & - |
B3| "L|2 4] 30|-1 4] |&;

For beam 2, 6,, =&, and the axial force N =0. Therefore SW =0 and

017 [12 -6L -12 -6L]( g

a2 O | E1j-6L 4 6L 2] 0 Z_{aéyz}T El {4 OH%}
0 13| -12 6L 12 6L || O 53 0 0f|&3|
56 5 6L 21% 6L 4% ||%2

L

Virtual work expression of structure is the sum of element contributions

T
i 4 e I P
63| L|2 4| 30|-1 4[&3

Principle of virtual work and the fundamental lemma of variation calculus imply that



8 2 -1
(_ pL ) Ao _ 0.
2 4| 30 4 | |63
In stability analysis the aim is to find the critical values (smallest of them typically) of the load pa-

rameter p such that the solution becomes non-unique. As the equilibrium equations are homogeneous,
non-zero solution is obtained only if the matrix (above) is singular:

8 2 pL4—1_ﬂ_pLﬂ_pL Lo
dt(_{z 4} 5{—1 4})_(8L Y30 T a0 (2|_ 30 P
2
pL <{20,84}.

The smallest of the values is the critical one



The simply supported uniform beam shown is divided
into two identical beam elements, each of length L/2. Dis-
placements are confined to the xz—plane. Cross-section
properties are A and | and Young’s modulus of the ma-
terial E. Determine the buckling load p, . Assume that
rotation angles satisfy &, =—-&,3 and &,, =0.

Solution

The axial force in the beams follows directly from a free body diagram and it is enough to consider
the virtual work associated with bending and interaction modes. The non-zero displacements and
rotations of the structure are &1, Uz, and &3 =—61.

Forbeam 1, 6,1 =64 and u,, =uz,. The axial force N =—p (negative means compression) follows
from a free-body diagram. Here h=_L/2

01T [12 -eh -12 —6h]( g

syint ) 0G| El|-6h 4h® 6h 2n% || @&y | |8 Tgﬂ 2 3]G
5U22 h3 -12 6h 12 6h Uzo 5U22 |_3 3L 12 ||Uz» ’
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56017 2 2
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For beam 2, u,, =Uz,, 6y3 =63 =6 and the axial force N =—p. As h=L/2

T

Suys 12 -6h —12 —6h7(y,, ]
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so that



T
. S 2 2
ouz; L°|3L 12| 15L|3L/2 36 Uz2

Virtual work expression of structure is sum of the element contributions

.
o 2 2

éWzéW1+éW2=—{ 6“1} asEl [ 3| 2pf L 3L/2){691}.
Uz 13|3L 12| 15L(3L/2 36 | (Uzz

Principle of virtual work and the fundamental lemma of variation calculus imply that

EI|L2 3L| 2p| L2 3L/2| (6
16— - ) =0.

L°{3L 12| 15L|3L/2 36 Uz2
As the equilibrium equations are homogeneous, non-zero solution is obtained only if the matrix
(above) is singular:

EI|L2 3L| 2p| 2 3L/2 pl? 16
det(16—- el )=0 = —‘——==2(13+2y31).
K |:3L 12} 15L|:3L/2 36 El 3( )

The smallest of the values is the critical one

16 El 240 El El
—22(13-231)==—5"_ = ~994— . €
Per 3( )LZ 13+ 24/31 |2 12



Find the density p., causing the beam of the figure to buckle in xz —plane.
Start with the virtual work density taking into account the interaction of the
bar and bending modes. Choose first 5w =0 in the virtual work density to
solve for the axial displacement and the axial force N . After that, choose
ou =0 to find the virtual work expression taking into account the internal
and coupling parts.

Solution
The displacements/rotations of the structure are Uy, =Uy 5, U,p =Uy, and 6y, = -6, . The starting
point is the virtual work density

2 2
S =IO gpdu_dowp AW dOWAW , se  where N =EAZY
dx dx  dx? dx? dx dx dx

which takes into account the bar and bending modes and their interaction. Approximations to axial
displacement u and transverse displacementw (£ =x/h and h=1L) are

U=£Ux2 = d—UZEszi
L dx L
a2 e o]’ o [5-2)
We L™'L {Uvz} o, dw_ 12 2 {Uvz} o, dtw_ 12 0 {Uvz}_
L2 2 07 dx ﬁ—zi 07 dx? | 6x 2 | (b7,
L” 'L 2 L 12 L

In the first step ow =0 . When the approximation to u is substituted there, virtual work density sim-
plifies to
dou du 5Ux2 EAUx2

OWg = W = ———EA—+oufy, =—

X
—OUy-r—pgA =
dx  dx L L x21 P9

L EA L
oW = FWedx =3y 2 (—Ux 2+ PA).

Principle of virtual work and the fundamental lemma of variation calculus imply that (notice that the
actual axial force is linear)

L pg . . . du EA L
Uy, =——=— giving as the axial force N=EA—=—uUyx, =——p0A.
X2 > E giving ax L x2 > £9
In the second step Su = 0. When the approximationto w is substituted there, the virtual work density

becomes (virtual work expression is available also in the formulae collection)



d?ow_, d’w_ dowdw

oW =— El -
S Pk dx dx
T 2 27
(6 12x) (6 127 [6x_6x°| [6x_6X
su 273 273 273 273 u
SWey = — Y2 (L L g )L L 0 L S N B S )Y2 N
607, 6x_2 6x_2 ax2 x| |3 _x| |9z
L N B F v I N

T
L Su 12 6L 36 -3L| (u
oW = | 5dex:—{ YZ} (E—3I ) LS ) ){ YZ}.
0 007,] "13|-6L 4L%| 30L|-3L 4L°| |6z
Principle of virtual work and the fundamental lemma of variation calculus imply (with
N=-LpgA/2)

(ﬂ 12 -6L] pga[ 36 3L ){UY2}=0
13|-6L 4l2| 60 |-3L 4L2] |6,

In stability analysis, the goal is to find the value of the loading parameter such that the solution is not
unique. This is possibly only if

dt(ﬂ 12 6L _ pYA 36 3L 2 13 EI
—6L 4L%| 60 |-3L 412
giving (the smallest p matters)
120 El

:-13+2\F— = ——13 24/31
( = P =3 )AgL3 13+ 2431 AgL3



2
The plane frame of the figure consists of a rigid body 3 and T L """"
beam elements 1 and 2. The joints at nodes 2 and 3 are : :
frictionless. Determine the critical value of the force F @ @
acting on the rigid body at distance «L « <[0,1] from 1L L

node 3 making the frame to buckle laterally. The cross-
section properties A, | and Young’s modulus of the ma-
terial E are constants.

Solution

The non-zero displacement and rotation components are uz, =uz3, &, =63, Ux,, and uys. The
vertical contact forces between the beams at nodes 2 and 3 follow from the equilibrium equations of
the rigid body 3. Therefore, the axial force inbeam 1is N =—aF and thatinbeam 2 N =—-(1-)F
(both compression) and it is enough to consider only the bending of beams 1 and 2.

For beam 1, the non-zero displacement/rotation components are (omitting the axial one as only the
bending mode is considered) u,, =uz, and 6y, =6,

o " [12 -6L -12 -6L|( ¢

swit__) O | Erj-st 4% 6L 2% || 0 |_ [dug, Tei[12 6L](uy,
Suzz| L°|-12 6L 12 6L ||uzp S| 13|6L 4L ||&2)
56 5 6L 2L% 6L 4L |l&2
o )" [3 -3L -36 -3L|( g

swer__) O | N |3t 4% 3L -] 0 |_[duzp)" «F [36 3L |[uz
Suzp| 30L|-36 3L 36 3L ||uza| [S&o] 30L|3L 4L2||&>
P 3L -2 3L 4% |G

therefore

sl {&JZZ}T E 12 6L] 4r[36 3L ){uzz}

56 o] "13|6L 4L?| 30L|3L 42| (&)
For beam 2, the non-zero displacement/rotation components are (again omitting the axial one as only
the bending mode is considered) u,3 =uz, =uz3 and 6,3 =3 =6,

o \7T [12 -6L -12 -6L7( g

0 | EI|-6L 4> 6L 21°|] 0 | {5u22}TE[12 6L:Hu22}
Suzo| 13|-12 6L 12 6L ||uz, 58, 13|6L 4L%||&]
56 5 6L 2L% 6L 4L |l%2

é\Nintz_




o7 [36 -3L -36 -3L]( g

swea—_) O L N -8L 4% 3L -L2)] 0 _Jouz2 T1-a)F[36 3L
Suzp| 30L|-36 3L 36 3L ||uzp| |o&.) 30L
P 3L -2 3L 4% |G

therefore

5 Suzo T El|12 6L (1-a)F 36 3L Uz
OW* =— 5 2 |~ 2 ) '
oo LP|6L 4L 30L 3L 4L%| (&2

Virtual work expression of the structure is the sum of element contributions i.e

.
su 12 6L 36 3L (u

éW:éW1+éW2:—{ 22} (2E—3' ) B ) ){ 22}.
56y, L3|6L 4L?| 30L|3L 4L | |&2

A non-trivial solution is possible only if the matrix inside parenthesis is singular

12 6L | F2(36 3L FL2 8
det _ =0 = —=—(13+231).
([m_ 4|_2} 60EI |:3L 4|_2}) El 3( )

Critical value is the smallest of the solutions
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Determine the critical value of force F causing some
beam of the truss shown to buckle. First, use the bar
model to solve for the nodal displacements and thereby
the axial forces as functions of the loading F (assumed
to be positive). After that, use criterion
N(F) = 72El / h? to find the first beam to buckle and
the critical value F, . Cross-sectional areas of beams 2
and 3 are +/8A and that of beam 1 2A. The second mo-
ments of cross-sections | and the Young’s modulus E of
the material are constants.

Solution
In the first step, the structure is considered as bar structure to find the nodal displacements as functions
of the loading. Virtual work expression of the bar element needed in the displacement analysis

T T
5\/\/"“ __ Suy E 1 -1ifuyg and swe&t = Suy M 1
§UX2 h|-1 1 Uyo §UX2 2 |1

depend on the cross-sectional area A, Young’s modulus E , bar length h, force per unit length of the

bar f, in the direction of the x —axis. The non-zero displacement/rotation components of the struc-
ture are uy o, Uy, and uzg. Virtual work expression of the elements are (no distributed forces)

Barl: u,; =0, uy, =uyo,,

Su 1 0 0ffu
T X2 X2
0 1 -1{[ 0
éwlz_{a } %{ 1 lHu }:_ OUixs % 09 Ol
U _
X2 X2 Suz g 0 0 0||uzs
_ 1
Bar2: uy =0, ngzﬁ(uXB"'uZB)
T
Sou 0 0 Offu
, o "EJBA[1 -1][ O | EA “
W == OUy3+du 8L -1 1 ||uyg+u =703 TO b
X3 Z3 X3 TYz3 SUzg 0 1 1f|uzs
. l l
Bar 3: UX3=ﬁ(ng—U23)a Ux2=$ux2
. Suy,)T 1 -1 17(uy,
3 Suxz—SUzz| E+BA[1 —1][uxz—uUz3 EA
Y _
X2 X2 Suz g 1 -1 1||uz,
Suy,)" [0

Force 4: oW* =— OUy 3 0
5“23 F



T

5UX2 F
Force 5: SW°=—{5Uy3+ 40
5“23 0

Virtual work expression of a structure is sum of the element contributions

Suy )" 2 -1 10(uy,) [F

oW =— 5UX3 (% -1 2 0 Uyxgrt+ 0 )
5“23 1 0 2 Uz3 F

Principle of virtual work and the fundamental lemma of variation calculus imply the linear equation
system and thereby the solution to nodal displacements

2 -1 1]fu 1 u -1/2
EA X2 X2 L

-1 2 0 Ux3 +F<{0:=0 = Ux3 =—21-1/4}.

1 0 2 Uz3 1 Uz3 -1/4

The axial forces of the beams become (notice that the expression depends on the displacement com-
ponents in the material coordinate systems of the beams)

EA 1FL,_ 1.
Beam1l: N=—u :_ T )=-ZF,
L X2 X 2EN " 2"
_ENBA 1
Beam 2: (Ux3+Uy3) =
ENENA J_
EVBA 1 1

Beam3: N=————(u Ux3+Uzg)=—-7F.
\/— \/— X2 7HYX3 Z3 \/E

The critical loading of the truss as predicted by criterion N = #2El /h? in which N is the magni-
tude of the compressive axial force

Beam 1: F —l 2 El 493
2" 12 12
Beam 2: F —i ZE~6.98E—2|,
V2 K
Beam 3: F =i7r2E—2|z 6.98E—2|.
2L K
The critical load of the truss is the smallest of the critical loads calculated for the beams
Fo-122El ca03El €
2 2 12

Beam 1 is likely to buckle first.



Determine the critical value of the in-plane loading p.,
making the plate shown to buckle. Use s o

W(X,y) =agsin(zx/L)sin(zy/L) as the approxima- />
<

tion and assume that Ny, =—-p, Ny, =0, and N,, =0
. Problem parameters E, v, p and t are constants. Inte-
grals of sin and cos satisfy, e.g.,

L . . X,\.,. X L L .X . X L
Io sin(iz")sin(jz-")dx = - & and .[o cos(iz ) cos(jz)dx == 5.

Solution

Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple in the linear analysis and that the in-plane stress resultants are known (from linear displace-
ment analysis, say), it is enough to consider the virtual work densities of plate bending mode and the
coupling of the bending and thin-slab modes

2 2T 2 2
0“ow / ox 5 0“w/ ox TN \
i oow/ o ow/ o
switt =) 2swiay? b\ LEL ] Pwray? |, sug = OO XL e By JOWTOx
12 Oow/ay| | Ny Ny |(ow/oy
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where the elasticity matrix of plane stress
1 v 0
[E]O,zi2 v 1 0
=" 0 -2
Approximation to the transverse displacement and its derivatives are
D SN
w(x, y) = aosm(zt)sm(;zt) =
ow
——aO( )cos(7z )sm(;z ) ay_aO( )sin(z — )COS(7Z )
o’w 3w 02w
— = =—3p(— )sm(;z )Sln(ﬁ ) L say(2 )cos(;: )cos(7z ).
x> oy? OXay

When the approximation is substituted there, virtual work densities of the internal and forces and that
of the coupling simplify to (N,, =—p and Nyy =Ny =0 )
3

5Wint:_5a012(1 - )(L) 2sin?(Z2 )sm( y)(1+v)+(l v)cos? (2= )cos (ﬁY)]aO

SWER = Sa, p(%)zcos2 (7z%)sin2 (n%)ao .



Virtual work expressions are integrals of the densities over the domain occupied by the plate/element

swint _ j j Swiltdxdy = —5a, (L)(—) ap,

3(1 2)

é\NSta .[ .[ SW. Stadxdy 5a0p( )( )aO

Virtual work expression
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Principle of virtual work SW =0 Véa, and the fundamental lemma of variation calculus give

3

OW =—dap]

3

2, Ly2q.
[ = )() IO(I) (E) Jap =0.
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For a non-trivial solution ag # 0, the loading parameter needs to take the value

1 t3E 7
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