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1 Lecture 7: Bohr atom, Heisenberg microscope, double
slit experiment
http://www.youtube.com/watch?v=hUJfjRoxCbk

http://en.wikipedia.org/wiki/Heisenberg%27s_microscope
http://spiff.rit.edu/classes/phys314/lectures/heis/heis.html

2  Lecture 8: problems in three dimensions
Liboff 10.1-10.5

2.1 3d coordinate systems

Generalizing the one-dimensional quantum physics from the previous course to three
dimensions is a very straight forward task. Consider the Hamiltonian of a single
particle of mass m in a one-dimensional potential V()

— + V(). (1)

In three dimensions this will become
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where V = (d/dx,d/dy,d/dz) and r = (z,y, z) are vector operators. In the case of
a spherically symmetrix potential, the potential simplifies as V(r) = V(r), where
r = /2% 4+ y? + 22 is the distance (say, distance from the nucleus of an atom, the
center of the quantum dot or what ever).

2.2 Cartesian coordinates

The simplest case is obtained when the external potential vanishes V (r) = 0. Now
the Hamiltonian can be written as
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where Hy = —%j—; and similarly for all o € {x,y, z}.

Notice that the Hamiltonian commutes with momentum operators, for exam-
ple [H,p,] = [H,—ih-t] = 0. Thus the eigenstates of the Hamiltonian H are also
eigenstates of momentum operators p,. These are known to be the plane-waves, for
example the eigenstates of p, are

Xy, () = Neth=, (4)



where k, is the corresponding eigenvalue (momentum). The eigenstate of H is thus
now necessarily of the form

The same reasoning can be repeated in y and z directions yielding the full set of
eigenstates ‘
U@y, 2) = Xy, (2) Y, (y) Zp. (2) = Ae™™. (6)

Thus, not surprisingly, the eigenstates are 3d plane waves. It is a very straightfor-
ward task to check that this is indeed an eigenstate of H. Solving the eigenequation

Hwk(‘rvyvz) :Ed}k(xvy?’z)v (7)
yields the corresponding eigenvalue Ej, = h;—jf These 3d plane wave states behave

exactly as their one-dimensional counterparts.

2.3 Example: charged particle in a magnetic field

Before going deeper into three dimensional systems, let us consider one very simple
example, namely a charged particle in a uniform magnetic field B. Such system is
described by the Hamiltonian (I will not derive this Hamiltonian here, it comes from
the classical electrodynamics by simply replacing classical variables by quantized

operators)
1 e \2
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where the momentum operator p = AV, and A is called vector potential. The
vector potential is related to the magnetic field as B = V x A. In particular,
a uniform magnetic field in the z-direction B = (0,0, B) is realized by a vector
potential A = (—yB,0,0). Notice that there are actually several possible choices of
A that all produce the same magnetic field, so one has some freedom in choosing
which one to use (they are all just as fine). A standard choice for A is called Coulomb
gauge, and it is defined as the choice of vector potential for which V- A = 0.
Obviously, here V - A = %yB =0.

Thus, satisfied that our A describes a uniform magnetic field B, we can sub-
stitute this into the Hamiltonian and obtain
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This Hamiltonian commutes with operators p, and p,, and hence the eigenstates
of H are also eigenstates of these components of the momentum operator. These in
turn are well known to be the plane waves e**** and e**s*. Thus we know that the
eigenstates of H are of the form

P e, (2, 2) = eFemtikz £y, (10)

The eigenequation Hyp = Fp reads now
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which upon evaluation yields (remember, p, = ihid/dz and hence p2e’*=* = —h%k?)

1 eyB\> pz h2k?
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The operator on the left hand side can be written as
2 27.2
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where yg = —CZEF and Q2 = (fn—B;)z. This operator is identical to the Hamiltonian

of a one-dimensional harmonic oscillator, in which the origo is shifted by yo along

the y-axis. The last term h;:; is simply a constant energy shift (constant in the
sense that it is not an operator. Different plane-waves with different k, of course
have different ’constants’.)

The eigenenergies of the one-dimensional harmonic oscillator are known to
be hd(n + 1/2), where n =0, 1,2, . ... Taking into account that the energies of our
present system are shifted by h> k2 /2m, we obtain the eigenenergies of Hamiltonian

H
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Notice that there is no k, dependence and hence there is a high degree of degener-
acy. This form for the eigenenergy does fit the classical picture of a charged particle
in a uniform magnetic field: the z-component of the motion is unaffected by a mag-
netic field in the same direction and hence the z-part enters the energy and the
eigenstate unaffected. The first part of the energy describes periodic motion (com-
pare with rotation in classical case) in the xy-plane. The corresponding eigenstates
are products of the harmonic oscillator eigenstates in the y-direction (shifted by o)
and plane-waves in the z and z directions
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where H,,(z) is the nth-order Hermite polynomial and A,, is a normalization con-
stant.

This example of a charged particle in a uniform magnetic field shows the key
concepts required when considering more complicated systems. Namely the utiliza-
tion of symmetries and how they enter commutation relations (H commuted with
p. and p.) and wavefunctions (product from e?*+7¢?*=% f(y)), and how the resulting
eigenproblem is simplified (mapped onto a one-dimensional harmonic oscillator).
However, these symmetries are often most easily utilized by writing Hamiltonian
using suitably symmetrized operators.

2.4 Spherical coordinates

If the Hamiltonian H is spherically symmetric, one should express operators in
spherical coordinates instead of cartesian. For this end, we would like to write the
Laplacian operator V? in spherical coordinates as
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yielding the Hamiltonian in spherical coordinates (no external potential V' (r) here,
we will add it later)
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Recalling the expression for the angular momentum operator from the previ-
ous course, we notice that the operator in the brackets is equal to —L? allowing us
to write the above Hamiltonian simply as
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2.5 Separation of variables, radial and angular parts

Adding a spherically symmetric external potential V(r) to the Hamiltonian does
not affect the subsequent calculation. Therefore, lets include it in order to make the
discussion more general. The Hamiltonian
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commutes with the angular momentum operator L? and thus they share common
eigenstates. Eigenstates of the angular momentum operator are the spherical har-
monics Y™ (6, ¢) which do not depend on radius r and thus it is a good idea to try
a trial wavefunction of the form

p(7) = R(r)Y (0, 9), (20)

where R(r) and Y (0, ¢) are referred to as the radial and angular parts of the eigen-
state. Substituting this trial wavefunction into the eigenequation Ho(7) = Ep(7),
we obtain
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Notice that L? acts only on the angular part of the wavefunction as it does not have
any r-dependence. Multiplying this equation by 2mr?/ (R(r)Y (6, ¢)) we obtain
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In the equation above, the first term depends only on radius r whereas the latter
term depends only on angles 6 and ¢. Since the equation holds for any value of r,0
and ¢, the two terms must be constants, equal in magnitude, and have opposite
signs. That is, we have
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where C} is some constant (to be determined below).

The second equation is known from the previous course. It was encountered
when solving the eigenstates and eigenvalues of the angular momentum operator
L?. Multiplying it by Y (6, ¢) yields the standard form of an eigenequation

L*Y (0,9) = C\Y (0, ¢). (25)

The eigenstates were called spherical harmonics and denoted by Y;™ (6, ¢) with !
being integer and the m quantum numbers were allowed to run from —[,—[ +
1,...,1—1,1. The corresponding eigenvalue was C; = h*I(I + 1).

Now we have solved the angular part of the eigenstate, what is left is the
radial part. From Eq. (22) we have now (multiplying by R(r)/2mr?)

h? d? h?
S (PR() — R V() — B) = 51+ DR(). (26)
Rearranging terms a bit yields
R d? h?
o dr? (rR(r)) + |V(r)+ py— I(1+1)| R(r) = ER(r). (27)

2.6 Radial wavefunction

As is evident from the above discussion, for a spherically symmetric potential, the
angular part of the eigenproblem is independent of the actual shape of the potential
V(r). The radial part, however, does depend on the potential. On the other hand,
the equation (26) is one-dimensional. Thus, for a spherically symmetric potential,
the three-dimensional problem is reduced to a one-dimensional radial problem.

The standard approach for solving the radial equation starts from making
change of variable R(r) = u(r)/r. We get

R d? 2
—%Wu(r) + {V(r) + erQZ(l + 1)} u(r)/r = Eu(r)/r. (28)
Multiplying this by r we obtain
R d? R
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This is exactly like a one-dimensional Schrodinger equation for an effective potential

B+ 1)
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The second term on the right hand side is called centrifugal term, and it resembles
the classical centrifugal force, by keeping a particle with nonzero angular momentum
| away from the origin (for [ # 0 it produces a 1/r? diverging potential wall at
origin). Notice that I added the subscript [ in the function wu;(r) since the radial
eigenstate depends on the angular quantum number (i.e. each ! has its own set of
radial eigenstates). In order to get better understanding to this centrifugal term,
let us first reconsider the case where the external potential vanishes V(r) = 0 for
all r.



3  Lecture 9: solving radial equation, special functions and
bound states

3.1 Free particle in spherical coordinates
Liboff 10.3,10.6

We have already solved the free particle in three dimensions using Cartesian
coordinates. It is very instructive to do it again using spherical coordinates and
then compare the results obtained from the two pictures.
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Figure 1: Spherical Bessel j;(z) and Neumann n;(z) functions for [ = 0, 1, 2. Notice
that only the Bessel functions are regular at the origin.

In absence of an external potential, the radial eigenequation reads

n? d? h? (14 1)
“amar o
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The radial eigenstates are given by the spherical Bessel j;(r) and Neumann n;(r)
functions shown in Fig. 1. The full 3d eigenstates of the free particle Hamiltonian
can be written as (remember R(r) = u(r)/r)

Prim (r) = ji(kr)Y,™ (0, 0), (32)

and
Choim (1) = (k7)Y (0, ¢). (33)

The quantum number k, which specifies the set of different radial eigenstates, is
analogous to momentum. However, here it must be understood as somekind of
radial momentum’. The correspondence will become more clear when we discuss
scattering problems. Both sets of eigenstates (for Bessel and Neumann functions)
have corresponding eigenenergies Ej = % However, only Bessel functions are
regular at origin, as the Neumann functions diverge at least as 1/r. Following Liboff,
we will consider only the regular Bessel functions.

These states and energies should be compared with the eigenstates obtained

ik The energy of such state is also Ej, = RE bt

in Cartesian coordinates Ae T

otherwise the states look very different. The reason for this apparent discrepancy
is in the degeneracy of the states, for the energy Ej does not depend on the di-
rection (spherically symmetric!). Thus one can combine different plane waves with
same magnitude for k£ but different directions and still obtain an eigenstate of the

Hamiltonian. The same can be done for any eigenstate but let us not go there here.




Thus, satisfied that we are seeing the same physics in both coordinate sys-
tems, what can we say about the centrifugal term in the Hamiltonian? We know
that classically the trajectory of a particle in the Cartesian coordinates is just a
straight line (there are no forces acting on it), and the quantum version of this
result is that the plane-waves are eigenstates of the Hamiltonian. The point is that
the transformation into the spherical coordinate system produces the centrifugal
(pseudo-)force, just like moving into a rotating coordinate system. The trajectory
is still the straight line but it just does not look like it in the new coordinate sys-
tem since the plane waves do not arise from the calculation naturally. However,
ultimately this is exactly the same thing as seen in classical mechanics when using
rotating coordinate system.

The free space eigenstates and the Bessel and Neumann functions will prove
useful later on when considering scattering problem in 3d. But let us first consider
bound states in presence of a 3d spherically symmetric potential.

3.2 Bound states in spherically harmonic potentials

Most external potentials will yield two kinds of states: bound states, which decay
(at least) exponentially in the » — oo asymptote and scattering states which do not
decay. We will first consider bound states in a few example potentials.

3.2.1 Hydrogen atom

Consider an electron in the vicinity of a massive point like positive charge (such as
the nucleus of an hydrogen atom, we want it to be massive so that we can assume
that the nucleus does not move), the external potential felt by the electron is given
by the Coulomb interaction

e? 1
Vir) = — = 34
() dmeg 1 (34)
We would now like to solve the eigenstates given by the equation
h? d? e 1 RPII+1)
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I will not go through the full derivation of the radial eigenstates, but rather
point out the physically interesting points in the calculation. For more details see
Liboff 10.6. The standard derivation starts by observing the asymptotic values of
the wavefunction in the limits » — oo and r — 0. In the first limit both the
centrifugal and the Coulomb interaction terms vanish since they decay as 1/r2 and
1/r, respectively. Thus we have the asymptotic equation

h? 2
“om wul(r) ~ Eu(r), (36)
with solutions
u(r) ~ Ae™ " + Be®", (37)

where oo = /—2mE/ h%. First of all, if the energy E is positive, the solution wu;(r)
consists of two plane waves that extend to infinity. These are called scattering
states and such states will be discussed later on. Here we are interested in negative
energies I/ < 0. Solutions of these states are called bound states since they describe
states where the electron is 'bound’ more or less to the vicinity of the nucleus,



with the radial wavefunction decaying faster than 1/r (remember, the real radial
wavefunction R;(r) is connected to our w;(r) by Ri(r) = w(r)/r).

However, for negative energies F < 0, the above asymptotic solution for wu;(r)
has two parts: one increasing exponentially and one decaying. The exponentially
increasing wavefunction is not normalizable and as such not physically possible.
Thus we conclude that B = 0 and the asymptotic form of the radial eigenstate will
become

uy(r) ~ Ae™". (38)

In the opposite limit r — 0 the centrifugal term will dominate and the asymp-
totic limit of the eigenequation will be

h? d? R I(l+1)
_%wul(r) + 23 u(r) =0, (39)
which can be written as P2 )
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() = == () (40)

which has the solution u;(r) = Cr*14-Dr~!. Again, the solution has an unphysically
diverging term unless D = 0 (except when [ = 0, but even then the constant term
D in up(r) would become nonregular D/r for R(r)). Thus we have the asymptotic
form in the limit » — 0 as

u(r) ~ Critt, (41)
Thus it looks like it would be a good idea to use a trial eigenstate of the form
wy(r) = ey (r). (42)

Indeed, continuing the derivation, this turns out to be a good ansatz, with the final
result for the radial eigenstates being

_r_ 27’
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where ag = 4’:;223 is called the Bohr radius. The function Liljlll(x) is generalized

(or associated as called in Liboff) Laguerre polynomial, and the quantum number
n (called the principal quantum number due to historic reasons) is used to list
the discrete set of radial eigenstates. From the derivation we can also obtain the
constraint n > [ + 1 which is sometimes written the other way around as I < n — 1.
The corresponding energy of the wu,;(r) state is

e | m eV m
o 2h2 \ 4dreg n2’

Notice the high level of degeneracy as the energy does not depend on angular quan-
tum numbers ! and m (don’t mix quantum number m with mass m). The degeneracy
with respect to different values of quantum number m arises from the spherical sym-
metry and it holds also for more general (spherically symmetric) potentials. The [
degeneracy, however, is pure coincidence and a property of the 1/r scaling of the
Coulomb potential. On the other hand, even in the case of hydrogen atom, the [ and
m degeneracies will be lifted when one includes interactions due to the spins of the
electron and the nucleus (called spin-orbit and spin-spin couplings). That, however,
goes beyond our current needs although we will briefly consider those effects later
on in the course.



3.2.2 Harmonic trap

Another important 3d potential is the spherically symmetric harmonic potential

Vir)= %mw%z. Thus we would like to solve the eigenstates given by the equation
R d?
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] ur(r) = Epuy(r). (45)
The solutions are (obtained using Ry;(r) = uni(r)/7):
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where the dimensionless distance 7 = r/rg and g = y/h/mw. The corresponding
eigenenergies are F,; = hw (2n + [ 4 3/2). Notice that the eigenenergies depend on
the orbital angular momentum quantum number [. Indeed, the [ degeneracy in the
case of Coulomb potential was simply a coincidence.

Just like in the case of 3d free space, the spherically symmetric harmonic
potential can also be solved easily in Cartesian coordinates. In these coordinates,
the Hamiltonian is

h? 1
H= f%v2 + Emaﬂrz = > H, (47)
oe{z,y,z}
where for example H, = —%% + %mwaQ, and similarly for other o € {x,y, z}.

The reason why this is so easy to solve is that different components H, commute
with the full Hamiltonian H, i.e [H, H,] = 0, for all o € {z,y, z}. Thus, just like in
the case of free space, the eigenstates can be written as

dj"w"y,nz (:E, Y, Z) = d)na‘ (‘T)d)ny (y)¢nz (Z)v

where the 1d-wavefunctions ¢, (z) are just the solutions of 1d harmonic oscillators.
The energy of this eigenstate is En, n,n, = hw (ng +ny +n. +3/2). While it is
not immediately obvious that the energy spectrum is the same as the one obtained
using spherical coordinates (E,; = hw (2n + [ + 3/2)), they are. This can be seen by
counting the degeneracies of different levels. For example degeneracy of the energy
E = lw(1+3/2) = hw3 is 3: in Cartesian coordinates one has (ng, ny, n.) = (1,0,0),
(0,1,0), or (0,0,1). In spherical coordinates one has only n = 0,1 = 1; however,
the [ = 1 state is three-fold degenerate, since the allowed m quantum numbers
are —1,0, and 1. One can generalize this simple observation to arbitrary energy
levels, showing that the energy spectrum is the same in both coordinate systems
(as it should, as the physics must be unchanged and the energy levels are well
defined physical quantities). Of course, we should also show that the corresponding
eigenstates can be written as linear combinations.

Harmonic potential has one very unphysical property namely that it becomes
infinite at the r — oo asymptote. Thus there are not scattering states but instead
all states are bound. While the potential itself may be unphysical when taken to
extreme, it is often a very good approximation for real physical potentials. The
physical setting will then give an upper bound in energy beyond which the harmonic
approximation may not hold any more.

This concludes our description of bound states in spherically symmetric 3d
potentials. Next we will study the other half of the 3d work, namely the unbound
or scattering states.



4  Lecture 10: scattering in 3d

Liboff 10.5, 14

The basic scattering theory in quantum mechanics is treated in different ways in
different books. Ultimately they all boil down to the same, but because of non-
standardized notation (Liboff, Schwabl and Griffiths define for example differential
scattering cross section in different ways) the approaches appear incompatible. I am
hoping that I can clarify the somewhat messy scattering calculation. Since Liboff
neglects quite a few details in the derivation, I will follow Schwabl. The main result,
however, is the same for Liboff and Schwabl.

The scattering problem describes the wavefunction of a particle that ap-
proaches the potential V(r) as a plane-wave e**  but scatters in all directions.
The scattering amplitude () describes the probability (amplitude) of scattering
in the direction 6.

4.1 Scattering theory in Liboff & Schwabl way

The discussion in the previous lecture regarding 3d spherically symmetric potentials
with radial and angular parts for the wavefunction apply equally well to stationary
scattering states. The stationary states are eigenstates of the Hamiltonian, and
satisfy the radial equation
h? d? h? (14 1)
—————wy(r Vir — | w(r) = Eu(r). 48
() + V) + ot ) = Bu(r) (48)
However, the difference to the bound states described earlier is that the scattering
states states are not bound, and at asymptote r — oo they have a plane-wave like
form (neglecting normalization)
eikr

or(r,0) = ™ + fk(9)7~ (49)

The first term on the right describes the incoming plane-wave (and also outgoing,
but unscattered, plane-wave as part of the plane-wave will necessarily go past the
potential unaffected). The second term describes the scattered part, in which the
scattering amplitude f(#) gives the probability amplitude for scattering to direc-
tion @, e’*" describes a plane-wave propagating out from the scattering potential
and the factor 1/r ensures proper normalization. ! Notice that the scattered wave
has the same magnitude for the momentum as the incoming wave. This is an as-
sumption that holds for elastic collisions (kinetic energy is conserved). The whole
scattering problem now boils down to determining the scattering amplitude fx(6).
The scattering amplitude fj(#) is of utmost importance, because it is a quantity
(or its magnitude) that can be measured in an experiment. The actual interparticle

1. Notice that even if the potential V' (r) is spherically symmetric, the full scattering state is not.
The reason is that the incoming wave e**? breaks the spherical symmetry by providing a specific
direction (direction of the propagation). This is of course a very important point that is worth
remembering when considering any symmetries: even if the Hamiltonian has some symmetry, the
actual states are not obliged to obey the same symmetries. However, the symmetry of the Hamilto-
nion does tell us what kind of states are coupled. In the case of spherically symmetric Hamiltonian,
the angular momentum is conserved and thus states with different angular momenta are uncou-
pled. If the state is a linear combination of different angular momenta, then each component can
be treated independently. This is of course precisely the same thing as when we express some state
in the eigenbasis of the Hamiltonian and follow each eigenstate separately. Symmetries just allow
us to do the same thing even if we do not know the full eigenstates of the Hamiltonian.
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interaction potentials V(r) cannot generally be directly measured, only its effect
on the trajectories of the particles. Thus, one often uses scattering phase shifts
and especially scattering amplitudes as input parameters for a theory. However,
it is important to understand the processes that go into these phenomenological
parameters in order to avoid possible inconsistencies in the theory.

The wavefunction ansatz (49) must be understood as the r — oo limit. As-
suming that the potential is sufficiently short ranged, we can neglect the potential
V(r) at large r. Thus, the asymptotic radial equation simplifies into

n? d? h? 11+ 1)
“omar )t o T

T— u(r) = Buy(r). (50)
The solutions to this equation are already known and the corresponding radial
eigenstates (remember again Ry (r) = ug(r)/r) are the Bessel j;(kr) and Neumann
functions n;(kr). Following Liboff, I neglect the non-regular Neumann functions
(one could also keep them, but the end result will be unaffected. If interested, have
a look at what Griffiths does.) The angular momentum is conserved in scattering
from a spherically symmetric potential (the radial functions for different [ are not
coupled), and hence we can limit ourselves to studying scattering with a fixed [.

Let us consider for a minute a case in which there is no scattering at all, i.e. set
V(r) = 0 and hence also f(6) = 0. Expressing the plane-wave using Bessel functions
(for describing the radial part of the wavefunction) and Legendre polynomials (for
describing the angular part) yields

s = (21 + 1)y (kr) P (cos 0), (51)
l

and expressing also the full wavefunction in this basis

©(r,0) = > CPgi(kr)Pi(cos 0) (52)
!

(the superscripts 0 referring to the initial assumption that there is no scattering at
all) gives

Z CPj1(kr) Py(cos ) = Z(Ql + 1)i'j1(kr)Py(cos 6). (53)
1 1

The equation must hold for all [, so we have
oY = (214 1)i. (54)

Next we will add the effect of scattering. However, the full wavefunction
©i(r,0) includes contributions from both incoming and outgoing waves, and the
scattering potential cannot affect the ingoing part (otherwise we would need some
rebounding from some walls at infinity). The separation into ingoing and outgoing
waves can be made explicit in the large r asymptote by writing the Bessel function
as

gi(kr) =

ST I:(*?:)leikr o 'I:l€7ikr] . (55)

The first term on the right describes outgoing spherical wave and the second term
describes ingoing wave. Now the ingoing wave must remain unaffected when we
introduce the scattering term f3(#)e’*” /r but the outgoing wave can be affected.
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However, the scattering term cannot affect the magnitude of the factor C; (since
the probability must be conserved and there are no transitions between different [
components due to spherical symmetry), but it can induce a phase shift 20y, (factor
two is for convenience as it yields the same final equation as Liboff). Thus, the full
wavefunction will be of the form

61’2&“ (71')16’”” o ilefikr

or(r) = cho Siior Py(cos ). (56)
I

By the way, notice that this wavefunction ansatz is the same as used in Liboff but
you will need to rewrite it as

) eiékl —i leikr _ Z'le—i/cre—iékl
or(r) = Z CP o (=9) 57k P;(cos )
l in (k 20 + k1) (57)
:ZClOei(sleln( r ]:—/ kl B(COSG).
p r
Thus we have now
ei25kl — leikr _ 7;le—ikr . eikr
St Picost) = 3221+ 1itja(r) Pileost) + Fu(0) .
l l
(58)
Expressing the scattering amplitude fj(#) using Legende polynomials P;(cosf) as
fx(0) = Z(Ql + 1)ag Pi(cosb), (59)
l
yields for each [ an equation
120k1 (__ i\l ikr ;1 —ikr N\l ikr sl —ikr ikr
g€ 2% (—i)'e i‘e _ g (—i)'e i'e e
C; Siler = (21 + l)Z ik + (QZ + 1)akl ; (60)
Solving for ay; yields (and using CP = (21 + 1))
120k _ 1 1 .
ap = eT = %e“sl sin 6. (61)
In particular, we obtain the scattering amplitude
1 .
fu(6) = ¢ D (20 + 1)e™ sin 6, Py (cos ). (62)

l

And an especially important quantity is the S-wave scattering amplitude which
describes low energy scatterings (i.e. scatterings which have so low energy that
they cannot exceed the centrifugal barrier of [ = 1 scatterings). This is obtained by
taking only the [ = 0 contribution (notice that it is also direction independent since
Py(cosf) =1)

1 .
fe = %ezéko sin dxo (63)

This is the final equation for the scattering amplitude. However, the question
of course remains, what is the phase shift dx;? Despite all the calculations we did
above, we are still no closer to solving the scattering problem, unless one is fortunate
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enough to have a problem in which the phase shifts can be calculated analytically
(or numerically). In the following we will calculate the phase shifts for a few special
cases, and you will do more in the exercises. If the potential is too complicated as
to deny a proper solution of the scattering problem, one can resort to perturbation
theory, which will be studied later.

4.1.1 Spherical square well

Let us assume scattering potential of the form

fi
V) = Vo forr<a (64)
0 forr>a.

This potential is very useful because of its simplicity. Usually we are not interested in
the details of the potential, especially when considering dilute (interparticle distance
is much larger than range of the potential a) and cold (momenta of the scattering
particles are small k < 1/a) systems such as ultracold atomic gases. Despite short
range of the potential, the particles can still be strongly interacting as will be seen.

Solving for the radial eigenstates consists of two parts, one for r < a (denoted
by u1(r)) and the other for r > a (uz(r)). Limiting ourselves to S-wave scattering,
we will set | = 0. For r < a the solution is described by the equation

B d?
—%ﬁul(r) + Vous (r) = Euq(r), (65)
yielding
ug(r) = Asin (kir) + Bcos (ki7), (66)

where ky = \/2m(E — V,)/h?, and A and B are constants to be determined. How-

ever, the latter term is not regular at origin (remember, the full radial function is
again given by u(r)/r) and we set B = 0.
For r > a the solution is described by the equation

W d?
_%WUQ(T) = Buy(r), (67)
which yields
us(r) = Csin (kr) 4+ D cos (kr) = C'sin (kr + dx) (68)

where k = y/2mE/h* and the constants C' and o are to be determined. Notice
that I have written the solution in two different ways. The latter form is more useful
for present purposes, but they are both completely valid and equal as one can easily
check.

Wavefunction must be continuous, and thus we require u1 (a) = uz(a), yielding

Asin(kia) = Csin(ka + ko). (69)

For a finite potential wall/well, also the first derivative of the wavefunction will be
continuous, and thus we have also

Ak cos(kra) = Ckcos(ka + dyp).- (70)
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Dividing the two equations yields
k1 cot(kra) = k cot(ka + Oxo)- (71)

One could of course solve for the phase shift d;¢ already here, but when we consider
cold (low energy) systems and short ranged potentials, we can do some simplifying
approximations. Considering low energy scatterings we have k < kp, assuming
that the depth of the potential well is not vanishingly small (and hence k; is not
small). Thus, the left side of the equation is not small whereas the right hand side
is multiplied by the small factor k. Therefore cot(ka + dx0) must be large. This,
however, can be large only if sin(ka + o) is small (cot(z) = cos(z)/sin(x) and
cos(z) is of course bounded from above). Thus we have ka + 0o ~ nm, where
n=0,1,2,.... Let us first consider the case ka + dio ~ 0 yielding

1 1

t(ka + 0ro) ~ ~ 72
0 ( at kO) sin(ka+6k0) ka+5k0’ ( )
finally yielding
k
kicot(kia) = ——. 73
1 cot(k1a) Tt o (73)
Solving for d;y we obtain
tan k
Sro ~ ka ( amnd 1) , (74)
1a
and the S-wave scattering amplitude is thus
. tankia
S =ik (2 1), 75
i = v (P 1) (75)

Since 8y is real, the phase factor e is precisely that, namely just a phase fac-
tor. When considering experimentally measurable observables, such as scattering
probabilities, the phase factor of course becomes irrelevant.

The interesting part thus is the magnitude

. <tank1a - 1) | (76)

kla

Two observations regarding the magnitude of the scattering amplitude: there are
maxima at values kja = n3 for odd n and zeroes for tan kja = kya. Consider for a
second a potential where a (the range of the potential) is fixed but somehow we could
change the depth (ultimately k1 ). Starting from k; = 0 and increasing, the scattering
amplitude (and hence probability) will increase until it reaches a maximum at k; =
55+ Making the well even deeper, the scattering amplitude will start decreasing
until it becomes zero. At this point, the particles stop interacting completely, as the
potential becomes effectively transparent. Such resonance transparency is called the
Ramsauer effect.

A word of warning though, the above equation for the scattering amplitude
does not describe correctly the maximum around kja = n%. Looking at Eq. (71),
for k1a = nZ we obtain

2
0 = kcot(ka + do), (77)

14



yielding

3o = n'g —ka =150 n’g, (78)

for odd n’. Thus the scattering amplitude becomes
1, 1,
= %el‘;’“" sin 00 = Ee“;’“’, (79)

the magnitude of which is simply 1/k. Low energy scattering amplitude thus di-
verges, and despite the short range of the potential, the effect of the scattering
potential in the total wavefunction in Eq. (49) is profound.

Increasing the depth of the potential even further, while keeping a fixed,
will yield more and more resonances and zeroes. Each resonance in the scattering
amplitude corresponds to a depth of the potential such that a new bound state is
created inside the well. The scattering properties and the bound states of a potential
are thus intimitely intertwined, and this phenomenon is of immense use for example
in the studies of ultracold atomic gases. In those systems, one can tune the energy
of bound molecular states formed of two atoms, and thus change the scattering
properties of the atoms. In sufficiently short time-scales, the molecular formation
can often be neglected, and thus one can study the scattering of two atoms with
tunable interparticle interaction strengths.

4.1.2 Two-particle problem

While the above discussion considered a particle in vicinity of some fixed external
potential, most of the time the potential may actually be moving and responding
to the particle. For example in the case of the hydrogen atom, the nucleus will feel
a recoil from the electron. We neglected this effect because the nucleus is so much
more massive than the electron but in more general case this may not be the case.
Like in classical physics, these problems should be treated in the center of mass
coordinate system.

Thus, lets consider two particles of masses m; and ms interacting through
interaction V' (7) where 7 is the interparticle separation. Lets also assume that the
interaction potential depends only on the distance of the two particles, i.e. we as-
sume that it is spherically symmetric V(7) = V(r). For example, for a hydrogen

2
46 L The corre-
TEQ T

atom we would have the Coulomb interaction potential V(r) = —
sponding two-particle Hamiltonian is now

p I;
1 2 vl — 7
2my  2meo (1 = 72)), (80)

where 1%'(, and ;5'0 give the position and momentum of particle o € {1, 2}.
Doing the coordinate transformation into the center of mass coordinates 7 =

Py — i, R = malidmaty o mibma and P — f 4 f, we obtain

mi+ma mi+msz
B
H=—+"4+V(IF) = H H, 81
2M+2M+ (7)) cm + Hyer, (81)
where M = my +mg, p = ,,:?1::527 and Hom = QﬁTiI'

From the above Hamiltonian it is apparent that the center of mass (CM)
motion of the two atoms decouples from the relative motion (rel). However, I would
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suggest checking the commutation relations for the new momentum and position
operators ﬁ, 137 7%', ﬁ, and to see that indeed these new operators satisfy
[, Di] = ih
o1 (82)
|:R1'a Ri| = Zha
for all ¢ € {z,y, 2} and that all other commutators are zero. Once that has been
confirmed, it becomes clear that the first term in the Hamiltonian describing the

center-of-mass motion (CM) commutes with the second term (rel). In such case, the
eigenstates of the two-particle Schrodinger equation become product states

gb(Fla FQ) = ¢CM (ﬁ)qsrel(F)- (83)

The center-of-mass eigenstates are trivial (since it has only the kinetic energy in
the Hamiltonian)

¢ (R) = AehF, (84)
with eigenenergy Ecym = 522]\[/([2.
The relative eigenstate is determined by the corresponding relative Hamilto-

nian )

2
Hrel = ﬂ + V( ) (85)
This is exactly like a Hamiltonian for a single particle of mass p in a spherically
symmetric potential V(r) and we can then use the results obtained above.

For a hydrogen atom, if we consider the nucleus as a single proton with mass
my = 1.672621581072" kg and the second particle is the electron with mass my =
9.109381881073! kg, the nucleus frame of reference and the center of mass frame of
reference become effectively the same.

,F'

5 Lecture 11: introduction to relativistic quantum
mechanics

Liboff 15

In the following sections I will study key concepts of relativistic quantum mechanics.
While this topic has usually been left to the end of the course (just like Liboff
considers it in the end of the book), there is really no reason for it as the whole
theory is based on ordinary Schrodinger mechanics and does not require knowledge
of the other stuff considered in this course. Except the extension to 3d quantum
mechanics, which we have already covered.

I am assuming that the reader is familiar with the (classical) special relativity
theory and here I will give an outline on how the quantum mechanics need to be
generalized in order to include relativistic effects as well.

The key question is thus: how does the quantum mechanics change if we
consider particles moving at velocities close to the speed of light? The relativistic
effects thus are expected to play a role at high energies. Also, when considering
very precise measurements, the relativistic effects may be visible at low energies as
well. Indeed, relativistic corrections can be shown to explain certain energy shifts
in the excitation spectra of atoms (hydrogen in particular). And perhaps the most
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