MS-C1081 – Abstract Algebra 2022–2023 (Period III) Milo Orlich – Rahinatou Njah

Deadline: Tue 7.2.2023 at 10am

During the exercise sessions you may work on the Warm-up problems, and the TAs will present solutions to those. Submit your solutions to Homework 1,2,3 and to the Fill-in-the-blanks problem on MyCourses before the deadline. Remember that the Homeworks and the Fill-in-the-blanks go to separate return boxes, and each return box accepts a single pdf file.

Warm-ups

Warm-up 1. Possible or not? For each point, give an example of a group *G* and a subgroup $H \lhd G$ satisfying the required properties, or explain why such an example does not exist:

- 1. *G* is infinite and G/H is finite,
- 2. *G* is infinite and G/H is infinite,
- 3. *G* is finite and G/H is infinite,
- 4. *G* is abelian and G/H is not abelian,
- 5. *G* is not abelian and G/H is abelian.

Warm-up 2 (Continuation of Homework 3 from Problem set 2). Let *G* be a group and denote by 1 the identity of *G*. Consider the direct product $G^2 := G \times G$ and define

 $H := \{(x, y) \in G^2 \mid y = 1\}$ and $K := \{(x, y) \in G^2 \mid x = y\}.$

You already showed in Problem set 2 that H and K are both subgroups of G^2 and both isomorphic to G.

- 1. Show that *H* is normal in G^2 .
- 2. Show that $G^2/H \cong G$.
- 3. Show that *K* is normal in G^2 if and only if *G* is abelian.

Warm-up 3. Think of $H = GL_n(\mathbb{Q})$ as a subgroup of $G = GL_n(\mathbb{R})$. Show that H is not normal in G if n > 1. (But H is normal in G if n = 1.)

Homework

Homework 1. Let $G = GL_n(\mathbb{R}) = \{n \times n \text{ real matrices with non-zero determinant}\}$, equipped as usual with matrix multiplication.

- 1. Let $K = \{A \in G \mid \det(A) \in \mathbb{Q} \setminus \{0\}\}$. Show that K is a subgroup of G, and that it is normal in G. [3 points]
- 2. Show that $G/K \cong (\mathbb{R} \setminus \{0\})/(\mathbb{Q} \setminus \{0\})$.

Hint. Consider $H = SL_n(\mathbb{R}) = \{A \in G \mid det(A) = 1\}$. Show that $G/H \cong \mathbb{R} \setminus \{0\}$ and $K/H \cong \mathbb{Q} \setminus \{0\}$ with the First Isomorphism Theorem. Conclude by using the Third Isomorphism Theorem. [3 points]

Homework 2. Let *G* be a group, and let H_1 and H_2 be subgroups of *G*.

- Suppose that H₁ is normal in G and H₁ is isomorphic to H₂. Can we deduce that H₂ is normal in G?
 Hint. Look elsewhere in this sheet for inspiration. [2 points]
- 2. Suppose that H₁ and H₂ are isomorphic, and that both are normal in *G*. Is it true that *G*/H₁ and *G*/H₂ are isomorphic? *Hint*. Take G = Z. [2 points]
- 3. Suppose f is an automorphism of G (that is, an isomorphism $G \to G$) that satisfies $f(H_1) = H_2$. Show that H_1 and H_2 are isomorphic. [2 points]

Homework 3. Let (G, +) be an abelian group. Show that, for $x_1, \ldots, x_n \in G$,

$$\langle x_1, x_2, \dots, x_n \rangle = \{a_1 x_1 + a_2 x_2 + \dots + a_n x_n \mid a_1, \dots, a_n \in \mathbb{Z}\}.$$

[6 points]

Fill-in-the-blanks. Complete the proof of the following claim:

Claim. Let *G* be a group, and let *K* be a normal subgroup of *G* for which the quotient *G*/*K* is abelian. All subgroups *H* of *G* with $K \subseteq H \subseteq G$ are normal in *G*.

Proof. Let *H* be a subgroup of *G* satisfying $K \subseteq H \subseteq G$. We will show that *H* is normal in *G* by using the normality criterion, that is, for all ______ and _____, we show that $x^{-1}hx \in H$. Recall that the set H/K, seen in Homework 2 of Problem set 3, is defined as $\{yK \mid y \in H\}$. If we show that the coset $x^{-1}hxK$ is in H/K, then we are done. Indeed

 $x^{-1}hxK \stackrel{(1)}{=} \underbrace{\qquad } \cdot \underbrace{\qquad } \cdot \underbrace{\qquad } \stackrel{(2)}{=} \underbrace{\qquad } \cdot \underbrace{\qquad } \cdot \underbrace{\qquad } \stackrel{(3)}{=} \underbrace{\qquad } \cdot \underbrace{\qquad } \stackrel{(4)}{=} \underbrace{\qquad } \in H/K,$

where in equality (1) we simply use the definition of the operation \cdot in G/K, in (2) we use the abelianity of G/K, in (3) we use the fact that $x^{-1}K = (xK)^{-1}$, and in (4) we use the fact that eK is the identity of G/K, if e denotes the identity of G.

[3 points]