
Analysis, Random Walks and Groups

Exercise sheet 3: Solutions

These model solutions are the same models used by Tuomas in Manchester, but some
exercises are omitted, attached into another exercises or separeted into separate exercises. I
(Kai) might have commented somewhere with red color if I think it is in place. Corrections
and improvements are welcome.

Homework exercises: Return these for marking to Kai Hippi in the tutorial on Week
4. Contact Kai by email if you cannot return these in-person, and you can arrange an
alternative way to return your solutions. Remember to be clear in your solutions, if the
solution is unclear and difficult to read, you can lose marks. Also, if you do not know how
to solve the exercise, attempt something, you can get awarded partial marks.

1. (5pts)

We say a probability distribution µ on Zp has a spectral gap if

|µ̂(k)| < 1, for all k ∈ Zp \ {0}.

Find the Fourier transform of the probability distribution

µ =
1

2
δ0 +

1

2
δ2

in Z4 (all the values of µ̂(k)) and use this to prove that µ does not have a spectral gap.
Prove then that

ν =
1

2
δ0 +

1

2
δ1

in Z4 has a spectral gap.

Notice also that µ is supported on a subgroup {0, 2} so it cannot be ergodic. Notice also
that the support spt ν = {0, 1} which is not a coset of a proper subgroup of Z4 so ν is ergodic.
Later we will see that in general spectral gap implies ergodicity, so ν is ergodic.

Solution 1.

The Fourier transform of µ at k ∈ Z4 is

µ̂(k) =
∑
t∈Z4

µ(t)e−2πikt/4 =
1

2
e0 +

1

2
e4πik/4 =

1

2
(1 + ekπi).

We see that

e0πi = 1, e1πi = −1, e2πi = 1, e3πi = −1.

Thus

µ̂(0) = 1, µ̂(1) = 0, µ̂(2) = 1, µ̂(3) = 0.

Hence

|µ̂(k)| = 1

for some k ∈ Z4 \ {0} (value k = 2). In particular, µ does not have a spectral gap.
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The Fourier transform of ν at k ∈ Z4 is

ν̂(k) =
∑
t∈Z4

µ(t)e−2πikt/4 =
1

2
e0 +

1

2
e2πik/4 =

1

2
(1 + ekπi/2).

We see that
e0πi/2 = 1, e1πi/2 = i, e2πi/2 = −1, e3πi/2 = −i.

Thus

ν̂(0) = 1, ν̂(1) =
1

2
(1 + i), ν̂(2) = 0, ν̂(3) =

1

2
(1− i).

Hence

|ν̂(1)| =
√

2

2
< 1, |ν̂(1)| = 0 < 1, |ν̂(3)| =

√
2

2
< 1

Thus
|ν̂(k)| < 1, for all k ∈ Zp \ {0}

so ν has a spectral gap.

Given a probability distribution µ on Zp, recall that we defined the associated transfer
operator as

Tµf(t) = µ ∗ f(t), t ∈ Zp,
where f : Zp → C. A complex number λ ∈ C is an eigenvalue of Tµ if there exists a
non-zero ψ : Zp → C (called eigenfunction of Tµ) such that

Tµψ(t) = λψ(t), for all t ∈ Zp.
The spectrum σ(Tµ) of Tµ is then the collection of all eigenvalues

σ(Tµ) := {λ ∈ C : λ is an eigenvalue of Tµ}

Notice here that Tµf(t) = Mµf(t) when

Mµf(t) := f ∗ µ(t),

as f ∗ µ = µ ∗ f

2. (5pts)

Given a probability distribution µ on Zp, prove that for each k ∈ Zp, the Fourier transform
µ̂(k) ∈ C is an eigenvalue of the transfer operator Tµ, that is, µ̂(k) ∈ σ(Tµ).

Hint: Attempt to prove the function ψk(t) = e2πikt/p, t ∈ Zp, is an eigenfunction of Tµ with
eigenvalue µ̂(k).

Solution 2.

For a fixed k ∈ Zp denote

ψk(t) = e2πikt/p, t ∈ Zp.
Notice that ψk 6= 0 for all k ∈ Zp. We claim that ψk is an eigenfunction of Mµ with
eigenvalue µ̂(k).

By the convolution theorem we have for all ` ∈ Zp that

ψ̂k(`)µ̂(`) = ψ̂k ∗ µ(`) = M̂µψk(`).
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Fix t ∈ Zp. Hence by the Fourier series for Mµψ(t) at t we have that

Mµψ(t) =
1

p

∑
`∈Zp

M̂µψk(`)e
2πi`t/p =

1

p

∑
`∈Zp

ψ̂k(`)µ̂(k)e2πi`t/p. (0.1)

Here we have that

ψ̂k(k) =
∑
t∈Zp

ψk(t)e
−2πikt/p =

∑
t∈Zp

e2πikt/pe−2πikt/p =
∑
t∈Zp

1 = p

and if ` 6= k we have

ψ̂(`) =
∑
t∈Zp

ψk(t)e
−2πi`t/p =

∑
t∈Zp

e2πikt/pe−2πi`/tp =
∑
t∈Zp

e2πi(k−`)t/p =
1− e2πi(k−`)

1− e2πi(k−`)/p
= 0

by the exponential sum formula (which we can use as k 6= `). Hence by (0.1) we have

Mµψ(t) =
1

p
µ̂(k)pe2πikt/p + 0 = µ̂(k)ψk(t)

so µ̂(k) is an eigenvalue of Mµ (i.e. µ̂(k) ∈ σ(Mµ).

Further exercises: Attempt these before the tutorial, they are not marked and will
be discussed in the tutorial. If you cannot attend the tutorial, but want to do the attendance
marks, you can return your attempts to these before the tutorial to Kai. Here Kai will
not mark the further exercises, but will look if an attempt has been made and awards the
attendance mark for that week’s tutorial.

3.

Conversely to Question 2, establish that if λ ∈ σ(Tµ), then λ = µ̂(k) for some k ∈ Zp.

In particular, together with Question 2, this proves that the spectrum agrees with the
Fourier coefficients of µ:

σ(Tµ) = {µ̂(k) : k ∈ Zp}.

Solution 3.

Let λ ∈ σ(Mµ). Then there exists ψ : Zp → C which is non-zero such that

Mµψ(t) = λψ(t), for all t ∈ Zp. (0.2)

Fix k ∈ Zp such that ψ̂(k) 6= 0. Such k exists since ψ 6= 0: indeed, if ψ̂(k) = 0 for all k ∈ Zp
we would have by the Fourier series for all t ∈ Zp that

ψ(t) =
1

p

∑
k∈Zp

ψ̂(k)e2πikt/p = 0

so ψ(t) = 0 for all t ∈ Zp. Thus we know that ψ̂(k) 6= 0 for this k ∈ Zp.
Taking now Fourier transform from both sides of (0.2) gives us

ψ̂ ∗ µ(k) = λ̂ψ(k).
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By the convolution theorem and the homogeneity of Fourier transform we have

ψ̂(k)µ̂(k) = λψ̂(k).

Dividing ψ̂(k) 6= 0 gives us

µ̂(k) = λ

as claimed.

4.

Define the Laplace operator ∆ for functions f : Zp → C by

∆f(t) =
f(t⊕ 1) + f(t	 1)

2
− f(t), t ∈ Zp.

In literature this would be called graph Laplacian associated to the graph formed by the
group Zp. We say that ψ : Zp → C is an eigenfunction of the Laplacian with eigenvalue
λ ∈ C if

∆ψ(t) = λψ(t), for all t ∈ Zp.
Prove that the function

ψk(t) := e2πikt/p, t ∈ Zp
is an eigenfunction of the Laplacian with eigenvalue λk = cos(2πk/p)− 1.

Solution 4.

By definition of the Laplacian, we have

∆ψk(t) =
1

2
(ψk(t⊕ 1) + ψk(t	 1))− ψk(t) =

1

2
(e2πik(t⊕1)/p + e2πik(t	1)/p)− ψk(t)

We notice that

e2πik(t⊕1)/p = e2πi(kt⊕k)/p = ψk(t)e
2πik/p

and

e2πik(t	1)/p = e2πi(kt	k)/p = ψk(t)e
−2πik/p.

Hence

1

2
(e2πik(t⊕1)/p + e2πik(t	1)/p) =

e2πik/p + e−2πik/p

2
· ψk(t) = cos(2πk/p)ψk(t)

so with λk = cos(2πk/p)− 1 we have

∆ψk(t) = λkψk(t)

for all t ∈ Zp. Thus ψk is an eigenfunction of the Laplacian with eigenvalue λk.

5. Define the iteration Tnµ f = Tµ(Tn−1µ f) with T 0
µf = f for n ≥ 1. Prove that the

L1 norm

‖Tnµ f‖1 ≤
√
p

√∑
k∈Zp

|f̂(k)|2|µ̂(k)|2n

for any n ∈ N.

Solution 5.
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We have that
‖Mn

µ f‖1 =
∑
t∈Zp

|f ∗ µ∗n(t)|

By Cauchy-Schwartz applied with t 7→ |f ∗ µ∗n(t)| and the constant function 1, we have∑
t∈Zp

|f ∗ µ∗n(t)| = 〈|f ∗ µ∗n|, 1〉 ≤ ‖f ∗ µ∗n‖2‖1‖2

Here

‖1‖2 =

√∑
t∈Zp

12 =
√
p

and by the Plancherel’s theorem and convolution theorem we obtain

‖f ∗ µ∗n‖2 =
1
√
p
‖f̂ ∗ µ∗n‖2 =

1
√
p
‖f̂ µ̂∗n‖2 =

1
√
p
‖f̂ µ̂n‖2 =

1
√
p

√∑
k∈Zp

|f̂(k)|2|µ̂(k)|2n

so the claim follows. Hence we have:

||Mn
µ f ||1 ≤

√
p||f ∗ µ∗n||2 =

√
p

1
√
p

√∑
k∈Zp

|f̂(k)|2|µ̂(k)|2n =

√∑
k∈Zp

|f̂(k)|2|µ̂(k)|2n.

Clearly this proves what we wanted, and it is even better we set out to solve.


