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• What is a stellarator?

– Twisted magnetic fields and different types of
stellarators

• (Performance-limiting) plasma transport in stellarators

• Advantages and disadvantages of stellarators over
tokamaks ⇒ is one concept going to win the race?

• Field-optimized stellarators and the Wendelstein 7-X
project

• Cost of fusion electricity



• Drawbacks/opportunity:
- No guaranteed flux surfaces
- Due to 3-D geometry, additional

losses, complexity,  localized
heating of wall
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• Conceptual  advantages:
- Inherently  steady-state
- No current  disruptions

(or  current-driven
instabilities)

A stellarator is magnetic confinement system
based on currents solely driven by external coils



• Magnetic
confinement
requires:

- Nested flux
surfaces

- Finite toroidal
transform

High and low
magnetic field

LHD
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Having to deal with a full 3-D magnetic field
configuration allows dedicated design of it

tokamak
+



Tokamak Stellarator
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• Axisymmetry

 Stellarator (flipping)
symmetry: (φ,θ) → (-φ,-θ)
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In a tokamak toroidal symmetry is preserved, in
stellarators imposed

 Periodicity φ→ φ+2π/P
(P: number of field periods)
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Stellarator
 transform produced by external

coils
• transform increases with radius

Tokamak
 transform produced by plasma

current
• transform decreases with radius

(safety factor increases)
• Axisymmetric

plasma current
• 2-D configuration
• Current-driven instabilities and

disruptions
• Pulsed

no externally driven TOTAL
toroidal current

 3-D configuration by definition ⇒
complex, prone to higher radial
transport losses

 No disruptions

• Steady-state

Tokamaks and stellarators produce two different
types of rotational transforms



toroidal angle

magneticisland

Magnetic axis
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Magnetic confinement in a stellarator is toroidally
asymmetric

Closed magnetic
flux surface

magnetic
islands



Closed field lines exist at rational values of m
toroidal and n poloidal transit ι/2π = m/n

Nested flux surfaces

Rational surfacemagnetic axis

ι/2π = 0.48

ι/2π = 0.51

• Rotational transform: R <Bθ> / reff <BΦ>
- Local pitch angle may vary strongly on flux surface
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Magnetic islands and
ergotic edge



- Radial profiles (e.g., pressure, total toroidal current J=0)
⇒ Outer flux surface can be parameterized (in cylindrical

coordinates (R, Z, Φ) with periodic conditions
• Boundary conditions: B tangential to surface
⇒ Solution of MHD equations inside surface
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The stellarator equilibrium can be derived from
the standard MHD equations

• Equations
(as for tokamaks):

• Equilibrium determined by:

j×B = 𝜵𝒑
𝜵×B = µ0j
𝜵∙B = 0



• Structures of magnetic field: shear, island, ergodic
regions ⇒ shortcuts of transport to wall
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Wendelstein 7-AS

Field lines can be visualized using an electron
beam in a hydrogen gas
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There is generally no analytic proof of existence of
flux surfaces in helical devices ⇒ field line tracing

WEGA field line visualization

Electron gun

ι/2π = 1/3

• Electrons emitted parallel to
B in vacuum field without
plasma ⇒ fluorescent
projector and interaction with
(Ar) background gas
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Fluorescent
screen

Numerical
field line
calculation
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Three basic types of stellarators
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• Three basic types of systems
- Heliotrons, “classical” stellarators, heliacs

• Principle research questions are very similar
- Design vacuum field (and coils) w/ good flux surfaces
- Reduce particle losses (drifts) in 3D geometry (fast particles,

neoclassical transport, trapped particles) ⇒ similar to
tokamaks

- Operation at maximum density (and pressure)
⇒ For steady-state, additional issues, such as power

exhaust and impurity control exist
⇒ Second-generation stellarators include modular coils

All helical confinement concepts revolve around the
question of how to build 3D toroidal flux surfaces
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• Proposed by Lyman
Spitzer in 1951 ⇒ poor
confinement
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Twisting the torus and hence magnetic field
produced helicity (Princeton Figure-8 stellarator)
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magnetic  surface

l=2: LHD-type
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A heliotron, or torsatron, is a stellarator with a
circular axis and helically twisted coils

Vertical
field
coils

Helical
field coils

Vertical field is needed to counteract the helical field
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The Large Helical Device (LHD) is an example of an
heliotron

• LHD dimensions: R=3.5 to 4.1 m,
volume= 28 m3

• Primary device and line of
stellarator research in Japan
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Helical coils,
superconducting
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• Wendelstein 7-A dimensions: R=2 m, a=10cm, l=2,
m=5, volume << 1 m3

• [Wendelstein family: WEGA, W7-A, W7-AS, W7-X]

Magnetic surfacefield line
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The previous Wendelstein 7-A stellarator used both
helical and toroidal coils (classic stellarator)
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• Resulting field
almost helical (like a
straight stellarator)
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In a heliac (TJ-II, CIEMAT, Spain) the plasma is
wound around a single central conductor

18



Wendelstein 7-AS

10 divertor modules

plasma edge topology
defined by 5/9 island
structures
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Islands in the edge can be used for energy and
particle exhaust
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The island structure was observed with a toroidally
viewing camera system

Wendelstein 7-AS
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Plasma edge topology defined by 5/9
island structures
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Transport processes in
stellarators
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• Stellarators have more classes of trapped particles
than tokamaks

⇒ (Diffusive) neoclassical transport of particles = losses
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Orbit drifts (in an inhomogeneous magnetic field)
lead to losses of particles and energy
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gyro orbit

toroidal
banana
orbits

helical

Er

Normalized collisionality
ѵ∝T1/2
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• Diffusion in low
collisionality
regime is large
(ripple trapped
particles)

• Radial electric
field leads to
de-trapping of
via ExB drifts

⇒ Optimization of
B-field (εeff) ⇒
linked mirror
concept)

Banana regime:

D ~ εeffT 7/2

Stellarators require a strong reduction of radial
convective transport to be high-performing
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Er
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W7-AS

εeff ~ A-1

partially
optimized:
linked
mirror,
elongation

With increasing radial electric field (de-trapping), cross-
field transport can be reduced at low collisionality
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εeff ~ A-1

Er
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In a drift-optimized stellarator (Wendelstein 7-X),
neoclassical diffusion is significantly reduced
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n0=4.2x1020 m-3
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• High-density
operation is
preferable also in
stellarators: fusion
yield, confinement,
low edge
temperatures

• Stellarators have
no disruptive
density limit

⇒ Yet, operation still
require density
and impurity
control

Superdense core plasmas have been obtained in the
LHD stellarator
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• Suppression of
turbulence ⇒ edge
transport barrier

• Unfortunately, also
improved impurity
confinement
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H-mode confinement and edge localized modes were
also observed in stellarators (W7-AS)
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Presemo quiz #1
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https://presemo.aalto.fi/fet/
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Toward future stellarator reactors
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• Steady-state capability  without need for current  drive
⇒ no current  disruption

• Maintain confining field and divertor  island structures
even  at high pressure

• High-density operation: no density limit like in tokamaks
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• Collisional losses: fast
particles, neoclassical
transport,  turbulence and
flows

⇒ Option: design an
optimized magnetic
configuration

To make stellarators successful, one needs to
minimize transport losses

30



toroidal field  coils

helical field  coils
modular  coils

toroidal
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Modular coils give wider accessible Fourier
distribution of currents, and 3-D shaping of axis
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 HELIAS (“pure stellarator”) •
⇒ drift-optimized

R=5.5 m, a=0.52 m,
Vplasma~30 m-3

~8 m

Timo Kiviniemi & Mathias Groth. Fusion Technology PHYS-E0463 “Stellarators“, Aalto University

 Fully cooled in-
vessel
components and
island divertor

The Wendelstein 7-X is the first optimized
superconducting stellarator

(vs JET 3/1/100 and  ITER 6/2/840)
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 HELIAS (“the pure stellarator”)
⇒ drift-optimized

R=5.5 m, a=0.52 m,
Vplasma~30 m-3

 Fully cooled in-
vessel
components and
island divertor

April 2011
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The Wendelstein 7-X is the first optimized
superconducting stellarator
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The projected performance (D-T equivalent) of W/-X
is an order of magnitude lower than that of ITER
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Conceptually, scientists have already been planning
for future stellarator reactors
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FFHR: R=20 m, Pth=3 GW

Timo Kiviniemi & Mathias Groth. Fusion Technology PHYS-E0463 “Stellarators“, Aalto University

ARIES-CS: R=8 m, Pth=4 GW

HSR4: R=18 m,
Pth=3 GW

 FFHR  = force free helical reactor (heliotron),
based on LHD [Fus. Eng. Design 1995]

 HSR4/18:  Helias reactor with four field
periods, based on W7-X [Nucl Fusion 2001]

 ARIES-CS: compact stellarator [Fus. Sci and
Tech. 2008]

Various extensions of helical devices toward
reactors exist
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Stellarator specific reactor issues

+ Steady-state ⇒ reduced fatigue
effects

+ No current drive ⇒ low
recirculating power (CD, SC, pulse
length, beta → net electricity)

- Mechanical forces between
coils requiring heavy support
structure

- Limited space between plasma
edge and coil in certain
locations for blanket and
shielding

FFHR

ARIES-CS

HSR4⇒ Going to larger R usually helps
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• Costs are significant – why paying twice?
⇒ Total investment into W7-X (1997-2014) = 1.1 bn €, EU for

ITER until 2022 = 8 bn €
⇒ EU fusion strategy for W7-X is not considered relevant for

ITER, but for DEMO
• Will there be more than one DEMO?
⇒ ITER + JT60-SA + (Chinese study) are steps toward

DEMO tokamak
⇒ Korea, Japan and China have built superconducting

tokamaks

Is a stellarator reactor better than a tokamak
reactor? In other words, who’s winning the race?
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⇒ US government stopped National Compact Stellarator
Experiment (NCSX), a quasi toroidal LN2 cooled device,
but also terminated Alcator C-mod ⇒ focus on ITER

⇒ In Japan, there is not yet a decision on a follow-up device
to LHD

• Can we gain from the synergy between tokamaks and
stellarators?

⇒ Tokamak research is better organized, focus on ITER
⇒ Stellarator research need more devices to cover the many

concepts
⇒ Will failure of ITER make way for stellarator?

Is a stellarator reactor better than a tokamak
reactor? In other workds, who’s winning the race?
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Cost of fusion
power plant and
electricity
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W7-X staff and funding profile

• W7-X team ~380 people, not including visitors and  support
personnel

• Total investment between 1997-2014 ~1.1 bn € (370 m€
device, 100 m€ buildings, 310 m€ staff)

• 25% funding from EU, 75% German and regional
government

• 2nd operational phase now ongoing (delay due to Covid-19)
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Delayed



Timo Kiviniemi & Mathias Groth Fusion Technology PHYS-E0463 “Stellarators”,
Aalto University

Project costs: ITER and W7-X vs. Olkiluoto and Länsimetro

a) EU for ITER until 2022 = 8 bn € (or: total constraction costs 20 bn$ compared to original estimate 5 bn$ and
full power 2027 compared to original estimate 2016)
b) Finland: Olkiluoto EPR fission power plant, “first of a kind”: 8.5 billion €, starts 2020 (compare to original
estimate 3.2 billion €, starts 2009)
c) Total investment into W7-X (1997-2014) = 1.1 bn€ (0.37 bn€ device, 0.1 bn€ buildings, 0.31 bn€ staff; started
2015, not e.g. 2004)
d) Finland: Länsimetro underground (via Otaniemi): first phase costed 1.2 bn€ (2008 accepted budget 0.7 bn€)
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Cost of fusion electricity depends on...
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 Investment cost depends on machine size expecially
for large reactors

 for <r> ≈ plasma coil spacing further reduce of size
does not help much (for a given Poutput)
a) higher loads on components
b) tighter spaces for maintenance
c) other engineering constraints
 → a larger extrapolation from current technology

required
• Cost of electricity also depends on the availability of

power plant (→ replacement of components), learning
factor, cost of materials and technological development
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Cost of fusion electricity depends on...
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In fusion ~ 70 % cost of capital,  3% O&M,  25% blanket and
divertor replacement, ~   1% Fuel, < 1% Decommissioning

Bustreo, ETSAP meeting 2013

= interest rate to determine the
present value of future cash flows
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Najmapadi et al, Fusion Science and Technology /
Volume 54 / Number 3 / October 2008 / Pages 655-672

Example: ARIES-CS Power-Plant Investment Cost
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The Wendelstein 7-X project

Timo Kiviniemi & Mathias Groth. Fusion Technology PHYS-E0463 “Stellarators“, Aalto University 46



The Wendelstein 7-X project at the Institute for
Plasma Physics in Greifswald, Germany
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Video of construction work for those who are
interested (same information is in following slides):
Construction W7-X (1.21 s)

Longer (5min) video will be shown later in this
lecture
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https://www.youtube.com/watch?v=u-fbBRAxJNk


The Wendelstein 7-X project at the Institute for
Plasma Physics in Greifswald, Germany

April 2011
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Long-pulse operation requires actively cooled wall
elements in the divertor

microwave launcher

1 MW gyrotron

divertor element

Highly complex device
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Mirnov magnetic
coil exposed to
microwave
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The vacuum vessel follows the twist of the desired
plasma
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Design, fabrication and testing of modular
superconducting coils was a major challenge
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plasma

He pipes

254 ports

3d-shaped  plasma vessel

2500 in-vessel  components

SC bus bar

central support ringBosch et al., IAEA-FEC 2012
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Integration of the coil / vessel system into a cryostat
is a significant engineering challenge

Cryostat vessel
~500 openings
access domes and
instrumentation
plugins

14 HTSC
current leads 50 non-planar

20 planar SC
coils
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The Wendelstein 7-X hall in 2006
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Bosch et al., IAEA-FEC 2012
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First magnetic assembly in cryostat of the W7-X
stellarator started in October 2009
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The Wendelstein 7-X hall in early 2013
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The Wendelstein 7-X hall in August 2013

Timo Kiviniemi & Mathias Groth. Fusion Technology PHYS-E0463 “Stellarators“, Aalto University 56



Timo Kiviniemi & Mathias Groth Fusion Technology PHYS-E0463 “Stellarators”, Aalto University

Assembly of Wendelstein 7-X completed in June
2014 → start of extensive commisioning
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The first (He) plasma in Wendelstein 7-X was
obtained on December 10, 2015 (100 ms long)
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IPP Feb 2016

Angela Merkel switches on Wendelstein 7-X fusion
device (first hydrogen plasma in Feb 2016)
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W7-X is hosted by the Institute for Plasma Physics
in Greifswald, Germany (project since 1994)

W7-X hall

diagnostics,
control room

assembly hall,
ICRF

ECRH

NBI, cooling
plant, He plant
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The 1st operation phase of W7-X is to verify the stellarator
optimization and develop integrated high-density scenario

• Commissioning of vacuum vessel, magnetic field, field
line tracing, plasma startup ⇒ first plasma Dec-2015

• 1st operation phase with inertially cooled divertor, some
in-vessel components cooled

• No provision for D-T operation
• Last divertor plates installed June 2021

Timo Kiviniemi & Mathias Groth. Fusion Technology PHYS-E0463 “Stellarators“, Aalto University 61

OP2 Delayed till 2022!



Compare to LHD result (Takeiri, IEEE
Trans. Plasma Science, 2018)
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New world record in stellarator fusion product
in W7-X (press release 25.6.2018)

• Fusion product 6 x 1026 Celsius m-3 s≈ 0.5 x 1020 keV m-3 s
was received with at Ti = 40000000 K (> 3 keV) and ni = 0.8 x
1020 m-3
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Ongoing campaign OP.2 (press release
14.9.2022)
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• 120 new divertor modules with a cooling system
→  operation at significantly higher plasma
energies possible

• New or upgraded heating systems more than
doubling output power:
 the new ICRH system (up to P=1.5 MW)
 NBI system with doubled heating power up to

P=7 MW
 ECRH system upgraded to 10 MW

• Injected energy (power × duration): so far max
75MJ, present OP.2 goal ≈1GJ, long term goal
18GJ (30 min discharge)



Video + Presemo quiz #2
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Video: W7-X fusion device (5min 42s)

https://presemo.aalto.fi/fet/

Quiz questions are mainly about the video so you
can do quiz during or after the video
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https://www.youtube.com/watch?v=51Hji5NfkdA&t=22s
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Summary
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• The equilibrium in a stellarator is established by
external coils only (3D) ⇒ can naturally be operated in
steady-state and no current-driven disruptions

• Good nested flux surfaces with small islands can be
obtained, even at high plasma pressure ⇒ island
divertor for heat exhaust

• Loss of axisymmetry results in additional loss
mechanism for particles and energy (fast particles,
alphas)
⇒ potentially be reduced by field optimization

• Stellarators can be operated at high-density without
impurity accumulation

• Wendelstein-7X started plasma operation in Dec-2015
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Reserve material
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Tokamak Stellarator
(Poincare plot)

q(r)= 𝑟 𝐵𝑇(𝑟)
𝑅 𝐵𝑝(𝑟) ≡  lim

𝑛→∞
θ𝑛
2𝜋𝑛
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Rotational transform defines closed field lines
(rational iota) and ergodic regions (irrational iota)

Inverse

↔
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• Assume helical symmetry:

• Vacuum field only:
(pressure = 0)

⇒ Flux surfaces:

 

B =B(r,  kz)

l=2 system
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Parameterize magnetic geometry in a straightenout
stellarator of pitch k

 = 𝐵0𝑧 + 1
𝑘
∑ 𝑏𝑙𝐼𝑙(∞
𝑙=1 lkr) sin [l(-kz)]

 = 𝐵0
𝑘𝑟2

2
− 𝑟∑ 𝑏𝑙𝐼𝑙(∞

𝑙=1 lkr) cos [l(-kz)]
= const

Mod. Bessel
function Il(lkr)
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• l=1 systems: shifted circles
• l=2 systems: elliptical with the center on-axis
• l=3 systems: triangular shape
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The Bessel function parameter l determines the
dominant helical harmonic
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