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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems about large displacement FEA:

  Large displacement elasticity theory, principle of virtual work

   Large displacement FEA for solid, thin slab, and bar models

 Non-linear element contributions of solid, thin slab, and bar models
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BENDING OF BEAM

x [m]

z [m]

CIM
L
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant 

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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SOURCES OF NON-LINEARITY

 Geometry: Equilibrium equations should be satisfied in deformed geometry depending

on displacement. Strain measures of large displacements are always non-linear.

 Material: Constitutive equation ( , ) 0g u  may be non-linear. Near reference

geometry, truncated Taylor series ( / ) ( / ) 0g g g u u           gives a useful

approximation.

 External forces: External forces may be non-linear. Even the simplest contact

conditions containing inequalities are always non-linear.

In non-linear mechanics ( , ) 0g     and ( , ) 0f u   the effect of material and geometry

cannot be separated in the same manner as !
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EFFECT OF GEOMETRY

Displacement at the free end ( , )L Lu w caused by force F  in bending of a cantilever. Axial

stiffness EA is assumed to be much larger than the bending stiffness EI  ( 2I AL ). Then,

length of the axis is (almost) constant L  no matter the deformation.

/Lw L

/Lu L

2 /FL EI

L
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BOUNDARY CONDITIONS

name symbol equation

joint A 0u 


slider A 0nu n u  
 

contact A A 0u n u  
   , A A 0F n F  

  , A A 0u F 

A

A

A
One-sided (non-linear) boundary condition!
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EXAMPLE. Determine the relationship between the vertical displacement of node 2

(positive upwards) and force F acting on node 2 for the structure shown. Assume that the

force-length relationship is given by N EAe  and / 1e h h    in which EA is constant, h

is the length when 0N  , and h  is the length at the deformed geometry (takes into account

the displacement).

Answer
2

2

1 2a sin a 12(sin a) 0
1 2a sin a

F
EA




  
  

 
, where 2a Yu

h




X
1 3

2

Y
α

y
x

y

x 21
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 Strain definition should not induce stress under rigid body motion of motion of a bar.

Strain measure / 1e h h   , based on the relative length change, satisfies the criterion.

At the deformed geometry, when displacement is 2Yu ,

2
2cos ( sin ) 1 2a sin aYh h I h u J h          

 


2 222

sin a

1 2a sin a
Y Y

Y

hh u u
u

  


 
 
  



2( 1) ( 1 2a sin a 1)hN EA EA
h

     


, where 2a Yu
h




.

 Virtual work expressions of external and internal forces for one bar element, written at

the deformed geometry with length h , are ext
2YW F u   and intW N h   . As the
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structure consists of two bars (internal parts of the bars are the same by symmetry),

virtual work expression of the structure

2

22

1 2a sin a 1[ 2 (sin a) ]
1 2a sin a

YW F EA u  


  
  

 
.

 Principle of virtual work and the fundamental lemma of variation calculus are valid also

in large displacement analysis

2

2

1 2a sin a 12 (sin a) 0
1 2a sin a

F EA 


  
  

 
. 

The remaining –mathematical problem– is to find a solution or solutions to the non-

linear algebraic equilibrium equation.
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FORCE-DISPLACEMENT RELATIONSHIP / 3 

Finding the solution by a numerical method can be tricky as a mathematically correct

solution may not be physically feasible, displacement (solution) may not depend

continuously on the force (data), solution depends on the loading path, etc.

/F EA

a

non-physical (unstable)
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5.1 LARGE DISPLACEMENT ELASTICITY

Assuming equilibrium on the initial domain , the aim is to find a new equilibrium on the

deformed domain  , when, e.g., external forces acting on the structure are changed.

The local forms of the balance laws are concerned with the deformed domain which depends

on the displacement! Precise treatment of large displacements requires modifications in

stress and strain concepts of linear theory.

P x
z

OO
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KINEMATICS OF LARGE DISPLACEMENTS

Displacement ..................... ( , , )r r u x y z    
  

Deformation gradient ....... cF I u 
  

Green-Lagrange ................ c c c2 ( ) ( ) ( )E F F I u u u u          
       

Variation ............................ cE F F   
     where c2 ( )u u    

  

Domain element  ................ dV JdV 

Jacobian ............................. | det[ ] |J F

Nanson ............................... 1
cndA JF n dA   
  or 1

cdA JF dA  
 
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KINETICS OF LARGE DISPLACEMENTS

Piola-Kirchhoff 1 ............... cJ P F  
 

Piola-Kirchhoff 2 ............... cJ F S F   
  (F S P 

 
)

Force element .................... cdF tdA n dA ndA P n dA         
      

Virtual work density ......... int
c c: :Vw S E J       

  

Elastic material.................. tr( ) 2S E I E  
   

Analysis uses the PK2 stress concept. Cauchy (true) stress follows from the relationship

between the quantities. In practice, the simple constitutive equation applies to isotropic

material subjected to small strains (displacements may be large).
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GREEN-LAGRANGE STRAIN

A rigid body motion should not induce strains! The proper strain measures with this respect

are non-linear in displacement components

2 2 2

2 2 2

2 2 2

( / ) ( / ) ( / )
1 ( / ) ( / ) ( / )
2

( / ) ( / ) ( / )

x y zxx xx

yy yy x y z

zz zz x y z

u x u x u x

u y u y u y

u z u z u z






                                 
                  

,

( / )( / ) ( / )( / ) ( / )( / )
1 ( / )( / ) ( / )( / ) ( / )( / )
2

( / )( / ) ( / )( / ) ( / )( / )

xy xy x x y y z z

yz yz x x y y z z

zx zx x x y y z z

u x u y u x u y u x u y

u y u z u y u z u y u z

u z u x u z u x u z u x







                  
                        

                      






.

All measures boil down to the definitions of linear displacement analysis when strains and

rotations of material elements are small!
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ELASTIC MATERIAL

Under the assumption of large displacement and small strains, the Green-Lagrange strain

measure does not differ much from the linear setting with small displacements and small

strains. Constitutive equations

1
1 1

1

xx xx

yy yy

zz zz

S
S

C
S

 
 
 

      
                     

 and

2
12

2

xy xy

yz yz

zx zx

S

S
G

S

   
   
    

      

,

with material parameters C  (which replaces E ),  , and / (2 2 )G C    are same as those

of the linear case, are assumed to simplify the setting. Also, the uni-axial and two-axial

(plane) stress and strain relationships follow just by using Green-Lagrange strains instead

of linear strains and C  instead of E .
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext 0W W   u   is concerned with the deformed domain

 . In large displacement theory, all quantities are expressed in the Cartesian xyz system

of the initial geometry

int int int
V VW w dV w dV    

    ,

ext ext ext

ext ext          .

V A

V A

W w dV w dA

w dV w dA

  

 

 

  

 

  

 

 

Physics is related with domain   occupied by the deformed body but mathematics with the

initial domain  of fixed geometry.

P x
z
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 Principle of virtual work int ext 0W W   u   holds at the equilibrium and therefore

at the deformed geometry. In non-linear analysis, virtual work density of internal forces

is expressed in terms of Green-Lagrange strain measure and PK2 stress with

cE F F   
     and dV JdV  (tensor identity c c: ( ) ( ) :a b c b b a b c    

       )

int 1 1
c c c( : ) : ( )W dV F E F JdV     

 
       

   


int 1 1
c c c( ) : ) ( : )W F F J E dV S E dV    

 
        

    . 

ext ( ) .... ( ) ...W g u dV g u dV    
 

        
   



The virtual work density due to gravity uses the balance law of mass in its local form

dV dV      or J     (also tdA t dA  
 

).
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, inertia forces, external volume forces due to

gravity are

TT

int
2

2

2

xy xyxx xx

V yy yy yz yz

zz zz zx zx

SS
w S S

S S


  

 


      
      

           
               

,

T

ext
x x

V y y

z z

u g
w u g

u g


  




   
   

    
   
   

.

Virtual work densities consist of terms containing kinematic quantities and their “work

conjugates” !

External distributed
force due to gravity
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DENSITY EXPRESSIONS FOR BEAMS AND PLATES

In large displacement theory, the displacement assumptions need to be modified to keep the

idea of rigid body motion of cross-sections (beams) or line segments (plates). In terms of

strain measures, the virtual work densities of internal forces

Beam: 2 2 2int τ )1 ( κ
2

w CA GCI J       ,

Plate:    n

T T

3
i t

κ κ
κ κ )

2
1 (
2 1

2 2 2κ 2κ

xx xx xx xx

yy yy yy yy

xy xy xy xy

tt C Cw   

        
                         
                      

.

The strain measures of the bar, bending and torsion modes of the beam expression depend

on Green-Lagrange axial strain , curvature κ , and torsion τ   of the mid-curve.
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 Finally, the strain measures need to be expressed in terms of displacement components.

For example, in a xz plane beam problem

2 21 1( ) ( )
2 2

du du dw
dx dx dx

    ,

2 2
2 2 3/2

2 2[ (1 ) ] / [(1 ) ( ) ]dw d u du d w du dw
dx dx dx dxdx dx

      .

These virtual work densities and the strain measure expressions assume. e.g., a stress-

free flat initial geometry, retain only the most significant terms etc. The generic

expressions in terms of the three displacement components are lengthy.
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5.2 LARGE DISPLACEMENT FEA

  Model a structure as a collection of beam, plate, etc. elements by considering the initial

geometry. Derive the element contributions int exteW W W     in terms of the nodal

displacement and rotation components of the structural coordinate system.

  Sum the element contributions to end up with the virtual work expression of the structure
e

e EW W  . Re-arrange to get T ( )W   a R a

  Use the principle of virtual work 0W   a  and the fundamental lemma of variation

calculus for n a   to deduce the system equations ( ) 0R a . Find a physically

meaningful solution by any of the standard numerical methods for non-linear algebraic

equation systems.
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BAR MODE

Virtual work expression can be expressed in a concise form in terms of initial and deformed

lengths of a bar element

int E Exx xxW CA    ,

T
1ext

2

1
12

u g A hW
u g
 


     
       

 
  ,

where 2E [( / ) 1] / 2xx h h    and 2 2 2 2
2 1 2 1 2 1( ) ( ) ( )y yx x z zh h u u u u u u       of the

deformed element depends also on the nodal displaments in the y   and z directions.

Transformation into the components of the structural system follows the lines of the linear

displacement analysis.
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EXAMPLE 5.1 Consider the bar structure shown subjected to large displacements.

Determine the relationship between the vertical displacement of node 2 (positive upwards)

and force F acting on node 2. Use the principle of virtual work and assume the constitutive

equation Exx xxS C , in which Green-Lagrange strain 2E [( / ) 1] / 2xx h h    and C  is

constant. Cross-sectional area of the initial geometry is A.

Answer 212(sin a)(asin a ) 0
2

F
CA

    


where 2a Yu
L



X
1 3

2

F

YL L

y
x

y

x 21


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 In (geometrically) non-linear analysis, equilibrium equations are satisfied at the

deformed geometry, although the mathematics is related with the initial geometry.

Virtual work expressions of internal forces of the bar element and the point force are

int 21E E [( ) 1]
2xx xx

h hW CA h CA
h h

        
 

and ext
2YW F u  .

 For element 1, the relationship between the displacement components in the material

coordinate system are 2 2 sinx Yu u   and 2 2 cosy Yu u   giving  ( 2a /Yu L )

2 2 2 2 2
2 2( sin ) ( cos ) (1+2asin a )Y Yh L u u L       

2
2 22( sin ) a (sin a)Y Yh h u L u L        .

 For element 1, the virtual work expression of internal forces takes the form
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int 2 21 1[( ) 1] a (sin a) (2a sin a )
2 2

h hW h CA L CA
h h

            
 

.

 Virtual work expression of the structure becomes (the internal contribution for bar 2 is

the same due to the symmetry). Hence

int ext 22 a (sin a) (2asin a ) aW W W L CA FL              .

 Principle of virtual work and the fundamental lemma of variation calculus give

2a[ (sin a) (2asin a ) ] 0L CA FL        a 

(sin a)a(2sin a) 0F
CA

    


. 
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FORCE-DISPLACEMENT RELATIONSHIP

/F CA

a

3
 

4
 
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EXAMPLE 5.2 Determine the nodal displacement 2Zu  and 3Zu  of the bar structure shown.

Use non-linear bar elements and linear approximations. Cross-sectional areas and length of

the initial geometry are 20.01mA   and 1mL  . Elasticity parameter 2100NmC    and

external force 0.05NF  .

Answer 2 0.085mZu    and 3 0.061mZu 

F

x
z

xz

z
x

L

L

1

3

2
X

Z

4

1

2
3

4
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 The physically correct solution is just one of the mathematically correct solutions to the

nodal displacements (in this case the number of solutions is 6). The solver for non-linear

analysis returns a real valued solution with the minimal norm. In the example, when

1mL  , 20.01mA  , 2100 NmC E    , and 1/ 20 NF  :
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5.3 ELEMENT CONTRIBUTIONS

Virtual work expressions for the elements combine virtual work densities of the model and

an approximation depending on the element shape and type. To derive the expression for an

element:

   Start with the large displacement versions of the virtual work densities intw  and extw 

of the formulae collection.

  Represent the unknown functions by interpolation of the nodal displacement and

rotations (see formulae collection). Substitute the approximations into the density

expressions.

  Integrate the virtual work density over the domain occupied by the element at the initial

geometry to get W .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal

displacements and rotations in terms of shape functions. In non-linear analysis,

approximations, shape functions etc. are written for the initial geometry.

Approximation Tu N a

Shape functions T
1 2{ ( , , ) ( , , ) ( , , )}nN x y z N x y z N x y zN 

Parameters T
1 2{a a a }na 

Nodal parameters a { , , , , , }x y z x y zu u u     may be just displacement or rotation

components or a mixture of them (as with the beam model).

always of the same form!
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SOLID MODEL

The model does not contain kinetic or kinematic assumptions in addition to those of non-

linear elasticity theory. Virtual work density expression of the internal and external forces

for the initial geometry are given by

TT

int
2 2

[ ] 2 2

2 2

xy xyxx xx

V yy yy yz yz

zz zz zx zx

w C G


  

 


        
      

             
                 

,

ext
Vw u g     

    and ext
Aw u t    

 .

The solution domain can be represented, e.g., by tetrahedron elements with linear

interpolation of the displacement components ( , , )u x y z , ( , , )v x y z , and ( , , )w x y z
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EXAMPLE 5.3 A tetrahedron of edge length L , density  , and elastic properties C  and 

is subjected to its own weight on a horizontal floor. Determine the equilibrium equation for

the displacement 3Zu of node 3 with one tetrahedron element and linear approximation.

Assume that 3 3 0X Yu u    and that the bottom surface is fixed and that the geometry and

density described is concerned with the initial geometry (gravity omitted).

Answer: 1(1 a)a(1 a) 0
2

F    where

2 311
4

2
1

gLF
C

 


 


   and 3a Zu
L

  .

3

1

X,x

4 2
Y,y

Z,z

L

L

L

g
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 Linear shape functions can be deduced directly from the figure 1 /N x L , 2 /N y L ,

3 /N z L , and 4 1 / / /N x L y L z L    . Only the shape function of node 3 is actually

needed as the other nodes are fixed. Approximations to the displacement components

are

0x yu u    and 3z Z
zu u
L

 ,  giving 0z zu u
x y

 
 

 
  and 3

1z
Z

u u
z L





.

 When the approximation is substituted there, the non-zero Green-Lagrange strain

component takes the form

2
3 32

1 1
2

zz Z Zu u
L L

    3 3 32
1 1

zz Z Z Zu u u
L L

     .
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 Virtual work densities of the internal and external forces simplify to (we assume that the

material is described by the constitutive equation of linear elasticity theory in which the

Young’s modulus E is replaced by elasticity parameter C)

int 2
3 3 3 32 2

( ) 1 1 11
(1 )(1 2

1( )
)

)(
2

V zz zz Z Z Z Z
Cw S u u u u

L LL L


 
  


   




 
 ,

ext
3V z Z

zw u g g u
L

         .

 Virtual work expressions are obtained as integrals of densities over the volume occupied

by the body at the initial geometry. With 3a /Zu L

3 2
int int int 2

3
1(1 a)(a a )

6 6
1

(1 )(1 2 ) 2V V Z
L LW w dV w C u





 

 
    





 ,
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3
ext ext

324V Z
LW w dV g u   

   .

 Finally, principle of virtual work 0W   with int extW W W     implies the

equilibrium equation

2 3
2( 1(1 a)(a a ) 01 )

(1 ) )6 22 2 4(1
L C L g

 



 

   . 

 In terms of
21 21

4 1
gLF
C
 


 


  the physically meaningful solution is given by

1/3 2/3
1a 1

3 3



     where 2 1/3( 9 3 1 27 )F F      .
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THIN SLAB MODE

Virtual work densities of plate combine the thin-slab and plate bending modes. Assuming

that the two modes de-couple and the bending mode can be omitted

T

int [ ]

2 2

xx xx

yy yy

xy xy

w t C 


 




    
             
          

,
T

ext x

y

gu
w t

gv


 


  
     
   

  where

2 2

2 2

( / ) / 2 ( / ) / 2/
/ ( / ) / 2 ( / ) / 2

/ /2 ( / )( / ) ( / )( / )

xx

yy

xy

u x v xu x
v y u y v y

u y v x u x u y v x v y

                                
                          

.

The planar solution domain  (reference-plane of the initial geometry) can be represented

by triangular or rectangular elements.
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EXAMPLE 5.4 Consider the thin triangular structure shown. Assuming plane-stress

conditions and xy plane deformation, determine the equation for the displacement

1 aXu L and 1 aYu L  of node 1 according to the large displacement theory. Young’s

modulus E, Poisson’s ratio  , and thickness t are constants and distributed external force

vanishes.

Answer: 2( 1 2a) a( 1 a) 0
1

tEL F


     
 1 2

3

F

x,X

y,Y

L

L

F

1

2



5-39

  Nodes 2 are 3 are fixed and the non-zero displacement/rotation components are

1 aXu L and 1 aYu L . Linear shape functions 1 ( ) /N L x y L   , 2 /N x L  and

3 /N y L  are easy to deduce from the figure. Therefore ( )au v L x y      and

2
1
1 ( a a )
22

xx

yy

xy

             
       


1

a( 1 2a) 1
22

xx

yy

xy


 



             
       

.

 Virtual work density of internal forces simplifies to

T

int 2
2

4[ ] a( 1 2a) ( a a )
1

2 2

xx xx

yy yy

xy xy

tEw t C 


  






    
                  

          

.
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 Integration over the triangular domain gives (integrand is constant)

1 2 2
2

2a( 1 2a) ( a a )
1

tEW L 


     


.

 Virtual work expression for the point forces follows from the definition of work

2 2 aW LF    .

 Principle of virtual work in the form 1 2 0W W W     a  and the fundamental

lemma of variation calculus give

2
2

2a [( 1 2a) ( a a ) 2 ] 0
1

tEW L L F 


       


a 

2
2

2( 1 2a) ( a a ) 2 0
1

tEL F


     


. 
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The point forces acting on a thin slab should be considered as “equivalent nodal forces” i.e.

just representations of tractions acting on some part of the boundary. Under the action of an

actual point force, displacement becomes non-bounded. In practice, numerical solution to

the displacement at the point of action increases when the mesh is refined.

 In the Mathematica code of the course, the problem description is given by
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BAR MODE

With the assumptions of the bar model ( ) ( ) ( )u u x i v x j w x k  
  , xxS S ii
 

 etc. in the

generic expressions for large displacement analysis for the solid model simplify to

int
xx xxw A C       ,

extw A u g      
  ,

where 2 2 21 1 1( ) ( ) ( )
2 2 2xx

du du dv dw
dx dx dx dx

     .

In FEA, the solution domain (a line segment) is represented by line elements and the

displacement components ( )u x , ( )v x , ( )w x  by their interpolants.
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 Let us start with the kinematical assumption ( ) ( ) ( )u u x i v x j w x k  
  . The kinetic

assumption is xxS S ii
 

. Green-Lagrange strain and its variation are

2 2 21 1 1( ) ( ) ( )
2 2 2xx

du du dv dw
dx dx dx dx

     , xx
d u d u du d v dv d w dw
dx dx dx dx dx dx dx
        .

 Assuming the constitutive equation xx xxS C  , virtual work densities of the internal

and external forces per unit length of the initial domain become (expression is integrated

over the cross section of the initial geometry)

int
xx xxw A C           and ext ( )x y zw A ug vg wg          . 
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BAR MODE

Virtual work expression can be expressed in a concise form in terms of initial and deformed

lengths of a bar element

int E Exx xxW CA    ,

T
1ext

2

1
12

u g A hW
u g
 


     
       

 
  ,

where 2E [( / ) 1] / 2xx h h    and 2 2 2 2
2 1 2 1 2 1( ) ( ) ( )y yx x z zh h u u u u u u       of the

deformed element depends also on the nodal displaments in the y   and z directions.

Transformation into the components of the structural system follows the lines of the linear

displacement analysis.
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 Linear approximations to the displacement components give constant values to the

derivatives /du dx , /dv dx , and /dw dx and the Green-Lagrange strain component xxE

is simply the relative difference in the squares of lengths:

2 2
2

2
1 ( ) 1 [( ) 1]
2 2( )

xx
h h h

hh
 

   


    and xx
h h

h h
 
 

.

  As virtual work density of internal forces is constant and the approximation linear

Virtual works of internal and external forces become

int int 21[( ) 1]
2

h hW w h h CA
h h

       
 

, 

T
1 1 1ext

2 2 2

11
12

x x y y z z

x x y y z z

g u g u g u
W h A

g u g u g u

  
 

  

                
. 
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 It is noteworthy that PK2 does not represent the true stress in bar. The constitutive

equation for the (true) axial force in terms of Green-Lagrange strain follows from the

relationship between the Cauchy stress and PK2 stress. Here the relationship

cJ F S F   
  simplifies to J FSF  in which / /J V V hA h A    and /F h h 

giving

( )h h hA h hS A N
h h h A hA hA
    

  
   


h hN A S A C
h h

    
 

.

 Using the axial force N  and the variation h  (at deformed geometry)

int 21[( ) 1]
2

h hW N h h CA
h h

       
 

(same as earlier).
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EXAMPLE 5.5 Write the virtual work expression of the structure shown in terms of the

nodal displacement 2Zu  and 3Zu . Use non-linear bar elements and linear approximations.

Solve for the nodal displacement when the cross-sectional areas and material properties are

1mL  , 21/100mA  , 2100NmC   and 1/ 20 NF  .

Answer 2 0.085mZu    and 3 0.061mZu 

F

x
z

xz

z
x

L

L

1

3

2
X

Z

4

1

2
3

4
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 For bar 1, the nodal displacement components of material coordinate system are

1 1 0x zu u  , 3 3 / 2x Zu u  , and 3 3 / 2x Zu u . As approximations are linear,

derivatives are

3 31(0 )
22 2

Z Zu udu
dx LL

   , 0dv
dx

 , 3 31(0 )
22 2

Z Zu udw
dx LL

    .

3 31 1(1 )
2 2

Z Z
xx

u u
L L

    3 31 (1 )
2

Z Z
xx

u u
L L


   .

 When the approximations are substituted there, virtual work expression of internal forces

simplifies to (density is constant)

1 3 3 3
3(1 ) (2 )

4 2
Z Z Z

Z
u u uCAW u
L L L

  
    .
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 For bar 2, the nodal displacement components are 3 3x Zu u   , 2 2x Zu u   and

2 3 0z zu u  . As approximations are linear, derivatives and the Green-Lagrange strains

take the forms

2 3 3 2x x Z Zu u u udu
dx L L

 
  , 0dv

dx
 , and 0dw

dx
 .

3 2 3 21(1 )
2

Z Z Z Z
xx

u u u u
L L
 

    3 2 3 2(1 )Z Z Z Z
xx

u u u u
L L

 


 
   .

 When the approximations are substituted there, virtual work expression of internal forces

simplifies to

2 3 2 3 2 3 2
3 2

1( )(1 ) (1 )
2

Z Z Z Z Z Z
Z Z

u u u u u uW u u CA
L L L

  
  

      .



5-50

 For bar 3, the nodal displacement components are 4 4 0x zu u  , 2 2 / 2x Zu u  , and

2 2 / 2z Zu u  . As approximations are linear, derivatives and the Green-Lagrange

strain take the forms

2 21( )
22 2

Z Zu udu
dx LL

    , 0dv
dx

 ,  and 2 21( )
22 2

Z Zu udw
dx LL

    .

2 21 1( 1 )
2 2

Z Z
xx

u u
L L

     2 21 ( 1 )
2

Z Z
xx

u u
L L

    .

 When the approximations are substituted there, virtual work expression of internal forces

simplifies to (density is constant)

3 2 2 2
2 ( 1 ) ( 2 )

4 2
Z Z Z

Z
u u uCAW u
L L L

       .



5-51

 Virtual work expression is sum of the element contributions. By taking into account also

the point force contribution 4
2ZW u F 

3 3 3 3 2
3 3 2(1 ) (2 ) ( )(1 )

4 2
Z Z Z Z Z

Z Z Z
u u u u uCAW u u u
L L L L

    
       

3 2 3 2 2 2 2
2 2

1(1 ) ( 1 ) ( 2 )
2 4 2

Z Z Z Z Z Z Z
Z Z

u u u u u u uCACA u u F
L L L L L

   
        .

 Principle of virtual work and the fundamental lemma of variation calculus give a non-

linear algebraic equation system for the non-zero displacement components 2Zu  and

3Zu . In most cases, finding an analytical solution in terms of the parameters of the

problem is not possible.
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EXAMPLE 5.6 A bar truss is loaded by a point force having magnitude F as shown in the

figure. Determine the equilibrium equations according to the large displacement theory. At

the initial (non-loaded) geometry, cross-sectional area of bar 1 is A and that for bar 2

/ 2A . Also, find the solution for 1mL  , 21/100mA  , 2100 NmC   and 1/ 20 NF 

.

Answer 2 m0.085Xu     and 2 0.25mZu 

X
Z

L

3

21

2

1

L
F

3

x

x
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 For bar 1, the nodal displacement components of material coordinate system are

1 1 0x zu u  , 2 2x Xu u  , and 2 2z Zu u . As the approximations are linear

2Xudu
dx L

 , 0dv
dx

 ,  and 2Zudw
dx L



 and the virtual work expression (density is constant) of internal forces simplifies to

1 2 22 2 2 2 2
2 2 2

1 1( ) [ ( ) ( ) ]
2 2

X Z X X Z
X X Z

u u u u uW u u u CA
L L L L L

          .

 For bar 2, the nodal displacement components of material coordinate system are

3 3 0x zu u  , 2 2 2( ) / 2x X Zu u u   and 2 2 2( ) / 2z X Zu u u    (notice the use of

initial geometry). As the approximations are linear

2 2X Zu udu
dx L


 , 2 2Z Xu udw

dx L



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 and the virtual work expression (density is constant) of internal forces simplifies to

2 2 2 2 2
2 2 2 2 2 2[ ( )( ) ( )( )]X Z Z X

X Z X Z Z X
u u u uW u u u u u u

L L
       

       

2 22 2 2 2 2 21 1[( ) ( ) ( ) ]
2 2

X Z X Z Z Xu u u u u uCA
L L L
  

   .

 Virtual work expression of the point follows from definition of work

3
2ZW F u  .

 Virtual work expression is sum of the element contributions. After a considerable

amount of manipulations, the standard form with notations 1 2a /Xu L  and

2 2a /Zu L
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2 2T 1 1 1 2 22
2 22 1 2 1 2 2 2 2

(1 a )(10a 5a 2a 5a )

8 8 [2a (1 5a ) a (
0

1 5a ) a (2 3a 5a )]
X

Z

uEAW Fu
EA






     
   

  

 



   
 




 
.

 Principle of virtual work and the fundamental lemma of variation calculus give a non-

linear algebraic equation system  ( 1 3a /Zu L  and 2 2a /Zu L )

2 2
1 1 1 2 2

2 2
1 2 1 2 2 2 2

0
(1 a )(10a 5a 2a 5a )

8 [2a (1 5a ) a (1 5a ) a (2 3a 5a )]F
EA

   



 




  




    




. 

 It is obvious that finding an analytical solution in terms of the parameters of the problem

becomes impossible even when the truss is very simple if the number of non-zero

displacement components exceeds one. Mathematica code of the course gives the real
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valued solution with the minimal norm (that is likely to be the physically meaningful

solution when the initial displacement is zero) ( 1mL  , 21/100mA  ,
2100 NmE C    and 1/ 20 NF  .


