
MEC-E8001 Finite Element Analysis, week 6/2023

1. The spring force of non-linear spring depends on the dimensionless dis-
placement a /u L according to 2 3(a a a /3)F k   . Determine the di-
mensionless displacement a /u L  if force / 4F k .

Answer a 0.370u
L

 

2. Determine the displacement at node 2 of the elastic
bar shown by the large deformation theory. Take into
account only the transverse displacement 2Yu  (

2 0Xu  ). When 0F  , the cross-sectional area and
length of the bar are A  and L , respectively. Consti-
tutive equation of the material is xx xxS C  , in
which C is constant. Use two elements with linear
shape functions.

Answer
3

1/3
2 ( )Y

FLu
AC

 

3. Consider the bar shown loaded by a point force. Determine the equilibrium
equations in terms of the dimensionless displacement components

1 2a /Xu L  and 2 2a /Yu L  according to the large displacement bar theory.
Assume that displacement component 0w  and use linear approximation to
the non-zero components u  and v . Without loading, the area of cross-section
and the length of bar are A  and L , respectively.  Constitutive equation of
the material is xx xxS C  , in which C is constant.

Answer 2 2
1 1 1 2

1 1(1 a )(a a a ) 0
2 2

F
A C

    


 and 2 2
2 1 1 2a (2a a a ) 0  

4. Determine the equilibrium equation of the elastic bar of
the figure with the large deformation theory. The active
degree of freedom is 2Xu  and the cross-sectional area and
length of the bar are A  and L  without the point force F
acting on node 2. Constitutive equation of the material is

xx xxS C  , in which C is constant. Use two elements
with linear shape functions.

Answer 2 1a(1 2a ) 0
4

F
AC

   where 2a Xu
L
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5. Consider the structure shown loaded by its own weight. Determine the
equations giving the displacement 2Xu  of the free end according to
large displacement bar theory. Without gravity, cross-sectional area,
length, and density of the bar are A , L , and  , respectively. Constitu-
tive equation of the material is xx xxS C  , in which C is constant. Use
a linear approximation.

Answer 2 2 2(1 ) (2 ) 0X X Xu u u L
L L L

g
C


  

6. Derive the equilibrium equation of the elastic truss shown with
the large deformation theory. The cross-sectional areas and
length of the bars are A  and L  when 0F  . Constitutive equa-
tion of the material is xx xxS C  , in which C is constant. As-
sume a planar problem of two elements.

Answer 21 1 1[2( ) 3 2] 0
2

Y Y Yu u uCA F
L L L

   

7. A thin triangular slab (assume plane stress conditions)
loaded by a horizontal force can move horizontally at node
1 and nodes 2 and 3 are fixed. Derive the equilibrium equa-
tion for the structure according to the large displacement
theory. Material parameters C ,   and thickness t  at the
initial geometry of the slab are constants.

Answer 2
1 1a( 1 a)( 1 a) 0
2 21

tLC F


     


 where 1a Xu
L



8.  A structure, consisting of a thin slab under the plane stress
conditions and a bar, is loaded by a horizontal force F acting
on node 1. Material properties are C and ν, thickness of the
slab is t, and the cross-sectional area of the bar A at the initial
unloaded geometry. Determine the equilibrium equation
giving as its solution the displacement component 1Xu  of
node 1 according to the large displacement theory.

Answer 2
2

1a(a 1 ) ( 1 a)a( a a) 0
4 21
L tC CA F


        


 where 1a Xu
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9.   A long wall having triangular cross-section, and made of homo-
geneous, isotropic, linearly elastic material, is subjected to its own
weight. Determine the equilibrium equation giving as its solution
displacement components 3Yu  according to the large displace-
ment theory. Nodes 1 and 2 are fixed. Use a three-node element
and assume plane stress conditions and symmetry 3 0Xu  . Mate-
rial properties C ,   and the density  of the initial geometry are
constants.

Answer 21 1(1 a)a(1 a) (1 ) 0
2 3

L g
E
      where 3a Yu

L
 .

10.  Node 4 of a thin rectangular slab, loaded by force F, can
move horizontally and nodes 1, 2, and 3 are fixed. As-
sume plane stress conditions and derive the equilibrium
equation of the structure according to the large defor-
mation theory. Use just one bilinear element. Material
parameters C  and 0  . Thickness of the slab at the
initial geometry is t.

Answer 2 31 5 14a a a 0
2 8 45

F
tLC

     where 4a Xu
L
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The spring force of non-linear spring depends on the dimensionless displace-
ment a /u L according to 2 3(a a a /3)F k   . Determine the dimensionless
displacement a /u L  if force / 4F k .

Solution
As the equilibrium equation is non-linear, finding the displacement as function of the force by hand
calculations is difficult (but possible for a third order polynomial). Mathematica gives three mathe-
matically correct solution

of which the real valued is obviously the physically correct one. A simple graphical method for find-
ing one solution to

2 31(a) (a a a )
3

R F k   

in a given range min maxa [a ,a ]  uses an iterative refinement of the range so that the sign change of
(a)R  is bracketed inside a smaller and smaller range.

F,u



Determine the displacement at node 2 of the elastic bar
shown by the large deformation theory. Take into account
only the transverse displacement 2Yu  ( 2 0Xu  ). When

0F  , the cross-sectional area and length of the bar are A
and L , respectively. Constitutive equation of the material is

xx xxS C  , in which C is constant. Use two elements with
linear shape functions.

Solution
Virtual work density of the non-linear bar model

int 2 2 21 1 1( ) [ ( ) ( ) ( ) ]
2 2 2

d u du d u dv d v dw d w du du dv dww CA
dx dx dx dx dx dx dx dx dx dx dx
             

is based on the Green-Lagrange strain definition which is physically correct also when rotations/dis-
placements are large. The expression depends on all displacement components, material property is
denoted by (constitutive equation xx xxS C  ), and the superscript in the cross-sectional area A
(and in other quantities) refers to the initial geometry (strain and stress vanishes). Otherwise, equilib-
rium equations follow in the same manner as in the linear case.

For element 1, the non-zero displacement components is 2 2y Yu u . As the initial length of the ele-
ment h L  , linear approximations to the displacement components

0u w   and 2Y
xv u
L

 0du dw
dx dx

   and 2Yudv
dx L

 .

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

int 22 2 2( )
2

Y Y Yu u uCAw
L L L

     1 32
2 ( )

2
Y

Y
uCAW u

L
   .

For element 2, the non-zero displacement component 2 2y Yu u . As the initial length of the element
h L  , linear approximations to the displacement components

0u w    and 2(1 ) Y
xv u
L

  0du dw
dx dx

   and 2Yudv
dx L

  .

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplifies to

int 22 2 2( )
2

Y Y Yu u uCAw
L L L

     2 32
2 ( )

2
Y

Y
uCAW u

L
   .

Virtual work expression of the point force is

3
2YW F u   .
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Virtual work expression of the structure is obtained as the sum of the element contributions

3 32 2
2[ ( ) ( ) ]

2 2
Y Y

Y
u uCA CAW u F

L L
     .

Principle of virtual work and the fundamental lemma of variation calculus imply that

32( ) 0Yu F
L CA

  
3

1/3
2 ( )Y

FLu
CA

  . 



Consider the bar shown loaded by a point force. Determine the equilibrium equa-
tions in terms of the dimensionless displacement components 1 2a /Xu L  and

2 2a /Yu L  according to the large displacement bar theory. Assume that dis-
placement component 0w  and use linear approximation to the non-zero com-
ponents u  and v . Without loading, the area of cross-section and the length of
bar are A  and L , respectively.  Constitutive equation of the material is

xx xxS C  , in which C is constant.

Solution
Virtual work density of internal forces is

int 2 2 21 1 1( ) [ ( ) ( ) ( ) ]
2 2 2

d u du d u dv d v dw d w du du dv dww CA
dx dx dx dx dx dx dx dx dx dx dx
              .

Assuming a linear approximation to displacement components with 2 2x Xu u  and 2 2y Yu u

2X
xu u
L




, 2Y
xv u
L




, and 0w   2Xudu
dx L




, 2Yudv
dx L




, and 0dw
dx

 .

Virtual work expression is obtained as integral of the density over the domain occupied by the body
(notice that the virtual work density is constant when the approximations are substituted there):

1 2 22 2 2 2 2 2 2 21 1( ) [ ( ) ( ) ]
2 2

X X X Y Y X X Yu u u u u u u uW L CA
L L L L L L L L

          
       

,

2
2XW F u  .

Virtual work expression of the structure is 1 2W W W    . In terms of dimensionless displace-
ments 1 2a /Xu L   and 2 2a /Yu L   (introduced just to simplify the expressions)

2 2
1 1 1 2 2 1 1 2 1

1 1( a a a a a ) (a a a ) a
2 2

W L CA FL              

2 2T 1 1 1 2
1

2 22
2 1 1 2

1 1(1 a )(a a a )a 2 2
a 1 1a (a a a )

2 2

F
CAW CA






             
    

  

.

 principle of virtual work and the fundamental lemma of variation calculus imply that

2 2
1 1 1 2

1 1(1 a )(a a a ) 0
2 2

F
CA

    


   and 2 2
2 1 1 2

1 1a (a a a ) 0
2 2

   . 

In this case, the solution can be deduced without numerical calculations: the latter equation implies
that 2a 0  as the other option 2 2

1 1 2a a / 2 a / 2 0    would mean an inconsistency with the first
equation. Knowing this (the real valued solution)
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Derive the equilibrium equation of the elastic bar of the figure
with the large deformation theory. The non-zero displacement
component is 2Xu  and the cross-sectional area and length of
the bar are A  and L , when the point force F acting on node
2 is zero. Constitutive equation of the material is S C  , in
which C is constant. Use two elements with linear shape func-
tions.

Solution
Virtual work density of the non-linear bar model

int 2 2 21 1 1( ) [ ( ) ( ) ( ) ]
2 2 2

d u du d u dv d v dw d w du du dv dww CA
dx dx dx dx dx dx dx dx dx dx dx
             

is based on the Green-Lagrange strain definition which works also when rotations/displacements are
large. The expression depends on all displacement components, material property is denoted by C
(constitutive equation xx xxS C  ), and the superscript in the cross-sectional area A  (and in other
quantities) refers to the initial geometry (strain and stress vanishes). Otherwise, equilibrium equations
follow in the same manner as in the linear case.

For element 1, 2 2x Xu u . As the initial length of the element / 2h L  , linear approximations to
the displacement components

0v w   and 22 X
xu u
L

  22 Xudu
dx L

 .

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

int 2 2 2 212 (1 2 ) 2 (1 2 )
2

X X X Xu u u uw CA
L L L L

      

1 2 2 2
2 (1 2 )2 (1 )X X X

X
u u uW u CA

L L L
     .

For element 2, 2 2x Xu u . As the initial length of the element / 2h L  , linear approximations to
the displacement components

0v w   and 2(1 2 ) X
xu u
L

   22 Xudu
dx L

  .

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

int 2 2 2 22( )(1 2 )2 ( )(1 )X X X Xu u u uw CA
L L L L
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1 2F

1 2 3



2 2 2 2
2 (1 2 )2 (1 )X X X

X
u u uW u CA

L L L
     .

Virtual work expression of the force is

3
2XW F u  .

Virtual work expression of the structure is obtained as sum over the element contributions

2 2 2 2 2 2
2[(1 2 )2 (1 ) (1 2 )2 (1 ) ]X X X X X X

X
u u u u u uW u CA CA F

L L L L L L
         .

Principle of virtual work and the fundamental lemma of variation calculus imply that

2 2 2 2 2[(1 2 )(1 ) (1 2 )(1 )] 0
2

X X X X Xu u u u u F
L L L L L CA

       

2a(1 2a ) 0
4

F
CA

   in which 2a Xu
L

 . 



Consider the structure shown loaded by its own weight. Determine the equa-
tions giving the displacement 2Xu  of the free end according to large dis-
placement bar theory. Without gravity, cross-sectional area, length, and den-
sity of the bar are A , L , and  , respectively. Constitutive equation of the
material is xx xxS C  , in which C is constant. Use a linear approximation.

Solution
As 0v w  , virtual work densities of internal and external distributed forces of the non-linear bar
model simplify to

int 21( ) [ ( ) ]
2

d u du d u du duw CA
dx dx dx dx dx
           and extw u gA    

the negative sign of the external part takes into account the direction of gravity with respect to the x-
axis. The non-zero displacement component of the structure is the vertical displacement of node 2 i.e.

2 2x Xu u . Linear approximation (two-node element) is

2X
xu u
L

  2Xudu
dx L

 .

When the approximation is substituted there, virtual work densities simplify to

2 2 2 2int ( (1 ) ( (2 )) )
2

X X X Xu u u uCA
L L L L

w        and x
2

e t
X Ax uw g

L
     .

Virtual work expression is integral of the virtual work density over the domain occupied by the ele-
ment at the initial geometry:

2int int
0

2 2
2 (1 ) ( (2 )

2
)X X

X
L Xu u uu

L L
CAW w dx

L
       ,

ext ext
0 2

1
2 X

L
W w dx gAL u      .

Principle of virtual work with int extW W W     and the fundamental lemma of variation calculus
imply that

2 2 2 1(1 ) ( (2 ) 0
2 2

)X X XAu u u L
L L

g
L

C A     0a a a(1 ) (2 ) L g
C
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L
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Derive the equilibrium equation of the elastic truss shown with the
large deformation theory. The cross-sectional areas and length of
the bars are A  and L  when 0F  . Constitutive equation of the
material is xx xxS C  , in which C is constant. Assume a planar
problem of two elements.

Solution
As 0w   and cross-sectional area of the initial geometry is A , virtual work density of internal forces
of the large displacement bar model simplifies to

int 2 21 1( ) [ ( ) ( ) ]
2 2

d u du d u dv d v du du dvw CA
dx dx dx dx dx dx dx dx
           .

In element 1, linear approximations to the displacement components expressed in terms of 1Yu  are

0u   and 1Y
xv u
L

  0du
dx

   and 1Yudv
dx L

 .

When the approximation is substituted there, virtual work density of internal forces and the virtual
work expression take the forms

int 21 1 11) ( )
2

Y Y Yu u uw CA
L L L

    ,

1 int 31
10

1 ( )
2

L Y
Y

uW w dx u CA
L

     .

In element 2, linear approximations to the displacement components expressed in terms of 1Yu  are

1Y
xu u
L

    and 0v   1Yudu
dx L

   and 0dv
dx

 .

When the approximation is substituted there, virtual work density of internal forces and thereby the
virtual work expression take the forms

int 1 1 1 11( )(1 ) ( )(1 )
2

Y Y Y Yu u u uw CA
L L L L

      ,

2 int 1 1 1
10

1(1 ) ( )(1 )
2

L Y Y Y
Y

u u uW w dx u CA
L L L

       .

Element 3 contribution (point force)

3
1YW F u   .

Virtual work expression of the structure is sum over the element contributions. In the standard form
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21 1 1 1 1
1

1 1[ ( ) (1 ) ( )(1 ) ]
2 2

Y Y Y Y Y
Y

u u u u uW u CA CA F
L L L L L

       .

Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equation

21 1 1[2( ) 3 2] 0
2

Y Y Yu u uCA F
L L L

    . 



A thin triangular slab (assume plane stress conditions) loaded
by a horizontal force can move horizontally at node 1 and
nodes 2 and 3 are fixed. Derive the equilibrium equation for
the structure according to the large displacement theory. Ma-
terial parameters C ,   and thickness t  at the initial geometry
of the slab are constants.

Solution
Virtual work density of internal force, when modified for large displacement analysis with the same
constitutive equation as in the linear case of plane stress, is given by

T

int
2

1 0
1 0

1 0 0 (1 ) / 22 2

xx xx

yy yy

xy xy

tCw
 

  
 



                               

,

2 2

2 2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

2

xx

yy

xy

u u v
x x x
v u v
y y y

u v u u v v
y x x y x y

   
  

     
            

               
   

      

.

Let us start with the approximations and the corresponding components of the Green-Lagrange strain.
Linear shape functions can be deduced from the figure. Only the shape function 1 (1 / )N x L   of
node 1 is needed.  Displacement components 0v w   and

1(1 ) X
xu u
L

   1Xuu
x L


 


, 0u
y





, 0yy xy      and 21 11 ( )
2

X X
xx

u u
L L

     .

When the strain component expression are substituted there, virtual work density simplifies to

int 1 1 1 1
2 2

1( 1 ) ( 1 )
21 1

X X X X
xx xx

u u u utC tCw
L L L L

 
 

          
 

.

Integration over the (initial) domain gives the virtual work expression. As the integrand is constant

2
1 1 1 1 1

2
1( 1 ) ( 1 )

2 21
X X X Xu u u uL tCW

L L L L



     



Virtual work expression of the point force follows from the definition of work

2 1
1

X
X

uW u F LF
L

   .

Virtual work expression of the structure is obtained as sum over the element contributions.  In terms
of the dimensionless displacement 1a /Xu L

2

2
1a( 1 a) a( 1 a) a

2 21
L tCW LF  


      


 2

2
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A structure, consisting of a thin slab under the plane stress con-
ditions and a bar, is loaded by a horizontal force F acting on node
1. Material properties are C and ν, thickness of the slab is t, and
the cross-sectional area of the bar A at the initial unloaded geom-
etry. Determine the equilibrium equation giving as its solution
the displacement component 1Xu  of node 1 according to the
large displacement theory.

Solution
Virtual work densities of the thin slab and bar models, when modified for large displacement analysis
with the same constitutive equation as in the linear case, are given by

T

int
2

1 0
1 0

1 0 0 (1 ) / 22 2

xx xx

yy yy

xy xy

tCw
 

  
 



                               

,

2 2

2 2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

2

xx

yy

xy

u u v
x x x
v u v
y y y

u v u u v v
y x x y x y

   
  

     
            

               
   

      

.

int
xx xxw CA      , 2 2 21 1 1( ) ( ) ( )

2 2 2xx
du du dv dw
dx dx dx dx

      .

Element contributions need to be derived from approximations and virtual work densities. Approxi-
mations to the displacement components depend only on the shape function associated with node 1
as the other nodes are fixed (displacement vanishes).

Let us start with the thin slab element. In terms of the displacement component 1Xu

1X
yu u
L

   and 0v   0u
x





, 1Xuu
y L





, and 0v v
x y
 

 
 

,

giving

0
1 a a
2

22

xx

yy

xy
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  where 1a Xu
L

   and 1a Xu
L

  .

Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)

T

int 2
2 2

0 1 0 0
1 1a a 1 0 a a a a (a 1 )
2 21 11 0 0 (1 ) / 2 2

tC tCw
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Virtual work expression is the integral of density over the domain occupied by the element (note that
the virtual work density is constant in this case). Therefore

2 2
1 int 2

2
1a a (a 1 )

2 2 2 1
L L tCW w   


    


.

The linear approximations to the displacement of the bar element are 0w v   and

1(1 ) X
xu u
L

   1 aXudu
dx L

    ,  and 2 21 11 1( ) a a
2 2

X X
xx

u uE
L L

       .

For the bar element, virtual work density of the internal forces and thereby the virtual work expression
(density is constant) simplifies to

2 1a( 1 a) a( a a)
2

W LCA       .

Virtual work expression of the point force follows, e.g., directly from the definition (force multiplied
by the virtual displacement in its direction)

3
1 aXW u F LF      .

Virtual work expression of a structure is the sum of element contributions

2
2

2
1 1a[ a (a 1 ) ( 1 a) a( a a) ]
2 2 21

L tCW LCA LF  


         


.

Principle of virtual work and the fundamental lemma of variation calculus give

2
2

1a(a 1 ) ( 1 a)a( a a) 0
4 21
L tC CA F


        


. 



A long wall having triangular cross-section, and made of homoge-
neous, isotropic, linearly elastic material, is subjected to its own
weight. Determine the equilibrium equation giving as its solution
displacement components 3Yu  according to the large displacement
theory. Nodes 1 and 2 are fixed. Use a three-node element and as-
sume plane stress conditions and symmetry 3 0Xu  . Material
properties C ,   and the density  of the initial geometry are con-
stants.

Solution
According to the large displacement theory, virtual work densities of the thin slab model under
plane strain conditions are

T

int
2

1 0
1 0

1 0 0 (1 ) / 22 2

xx xx

yy yy

xy xy

tCw
 

  
 



                               

,
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2 2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

2
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xy

u u v
x x x
v u v
y y y

u v u u v v
y x x y x y

   
  

     
            

               
   

      

.

T
ext x

y
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w t gv


 


        
    

in which xg  and yg  are the components of acceleration by gravity and   the density at the initial
geometry. Above, constitutive equation is assumed to be of the same form as that for the linear theory
with possibly different elasticity parameters C  and  .

Shape function 3 /N y L  of node 3 can be deduced from the figure. Linear approximations to the
displacement components and their derivatives are

0u   and 3Y
yv u
L

  0u
x





, 0u
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, 0v
x





,  and 3Yuv
y L





.

When the approximation is substituted there, the non-zero Green-Lagrange strain component and its
variation take the forms

23 31 ( )
2

Y Y
yy

u u
L L

    and 3 3 3Y Y Y
yy

u u u
L L L

     .

Virtual work densities simplify to

int 3 3 3 3
2

1(1 ) (1 )
21

Y Y Y Yu u u utEw
L L L L




    


,

ext
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yw u t g
L

     .
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Integration over the domain occupied by the body at the initial geometry gives the virtual work ex-
pressions

2
int 3 3 3 3

2
1(1 ) (1 )

2 21
Y Y Y Yu u u uL tEW

L L L L





   


,

3( )/2ext ext 3
0 ( )/2

( )
6

L L y Y
y L

u L t gW w dx dy
L

  



    .

Virtual work expression in the sum of the internal and external parts. Written in the standard form

2 3
3 3 3 3

2
1[(1 ) (1 ) ]

2 2 61
Y Y Y Yu u u uL tE L t gW

L L L L
 


    


.

Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equations

21 1(1 a)a(1 a) (1 ) 0
2 3

L g
E
       where 3a Yu

L
 . 



Node 4 of a thin rectangular slab, loaded by force F, can
move horizontally and nodes 1, 2, and 3 are fixed. Assume
plane stress conditions and derive the equilibrium equation
of the structure according to the large deformation theory.
Use just one bilinear element. Material parameters C  and

0  . Thickness of the slab at the initial geometry is t.

Solution
According to the large displacement theory, virtual work density of the thin slab model (plane stress
condition) is

T

int
2

1 0
1 0

1 0 0 (1 ) / 22 2

xx xx

yy yy

xy xy

tCw
 

  
 



                               

,

2 2

2 2

1 1( ) ( )
2 2
1 1( ) ( )
2 2

2

xx

yy

xy

u u v
x x x
v u v
y y y

u v u u v v
y x x y x y

   
  

     
            

               
   

      

.

Only the displacement of node 4 in the X  direction matters. Shape function 2
4 /N xy L  gives

0v    and 4
2

Xuu xy
L

  4
2

Xuu y
x L





 and 4
2

Xuu x
y L





.

When the approximations are substituted there, the Green-Lagrange strain components and their var-
iations simplify to

2

2 24 4
2 2

10 ( )
2

22

xx
X X

yy

xy

yy
u u x
L Lx xy

                   
             

 and

2

24 4
2 2( 0 )

22

xx
X X

yy

xy

yy
u u x
L Lx xy






                   
             

.

Virtual work density of the internal forces according to the large displacement theory simplify to
(with the Poisson’s ratio 0  )
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The four terms of the virtual work density
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Virtual work expressions are obtained by integrating the densities over the domain occupied by the
element
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Virtual work expression of the point force
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Virtual work expression is the sum of the terms. In terms of the dimensionless displacement
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Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equation
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