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Optimization

In economic modeling, we explicitly model choices. This done
through optimization.
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A maximization problem
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» The endogenous variables

» The exogenous variables

» The objective

» The constraints (the feasible set)



Some Examples

Profit Maximization:

max gP(q) — c(q)
qER+



Some Examples

Utility maximization:

WA

st. p-x<m



Some Examples

Consumption/Savings:
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or in continuous time
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Optimization

In this course we're going to develop some basic tools for
non-linear optimization
» Our focus is primarily theoretical, we'll develop the tools we
need to establish theoretical results in the subsequent
economics courses.
» This course only scratches the surface. | leave work on
numerical tools, stochastic optimal control, etc. to other
courses.



A very quick review

Existence:
» Knowing that a problem has a maximum is very important.

> The extreme value theorem tells us that any continuous
function with a compact domain has a maximum/minimum.

» This result is very general.
» For some of our problems, its application is a bit subtle. I'm

I'm mostly going to ignore questions of existence in this course.



A very quick review

Unconstrained optimization:
» First order conditions: Vf(x) = 0 at an interior max.

» Second order conditions: D?f(x) is negative semidefinite at a
max. Vf(x) = 0 and D?f(x) negative definite are sufficient
for a maximum.



Constrained Optimization

Remember the consumer problem:

max u(xi, x2)

s.t. pi1x1 + p2xo =m

Suppose | move x a little bit to (x3 + dx1,x2 + dxz). What has to
hold at a max?



Constrained Optimization

First, we need to make this tiny change while maintaining the
constraint, i.e.:
pidxy + p2dxo =0

and we know if these changes are small
u(x + dx) — u(x) = dxyui(x1, x2) + dxaua(x1, x2).
Therefore at a max, for any feasible change

Xmul(Xl,XQ) + dXQUQ(Xl,XQ) ~0



Constrained Optimization
We know that, at a max

p1rdx1 + padxo = 0

and
Xmul(Xl,XQ) + dX2U2(X1,X2) =0
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Constrained Optimization
We know that, at a max
p1rdx1 + padxo = 0

and
Xmul(Xl,XQ) + dX2U2(X1,X2) =0

Combining these:
p1
Xmul(Xl,Xg) = adX1U2(X1>X2)

ur(x1,x2)  wuz(x1, x2)

P1 P2
So, there exists a constant A s.t.

u1(x1, x2) _ ur(x1, x2) _)
P1 P2

Which gives us the familiar condition

Vu(x) = A(p1, p2)




Formalizing this

We did two things here:

> We used the constraint to identify how variations in x»
implicitly are determined by the perturbation we make to xj.

» We used this implicit function to make “first order conditions”

Let's make things precise



Lagrange Multipliers

Theorem
Let f : R" — R and g : R" — R™. Let x* be a solution to

max f(x) s.t. g(x) =0

and suppose Dg(x*) has rank m. Then there exists a unique
Lagrange multiplier A € R™ such that Df (x*) = XN Dg(x*).



Lagrange Multipliers

Geometrically, what does it mean for such a A to exist?



Example

Consider the consumer problem

max x1/2y1/2
x,y€Ry

st. pix+py=m

The Lagrange multiplier theorem gives us “FOCs"

1
§X_1/2y1/2 — Ap1

1
§X1/2y—1/2 —Ap

Turns our maximization problem into a system of three non-linear
equations with three unknowns



Example

Combining the FOCs, we get

1 1

S VeV SV IS v
2p1 2p2
p2y = p1Xx

Plugging this into the constraint, we get

m m
5 Y =5
2p 2p>



Example

We can also apply this theorem to problems with more than one
constraint. Consider:

max4y — 2z
st.2x—y—z=2
X4y’ =1



Lagrangian

Before we get to the proof, one more useful object. We can define
the function

L(A) = max f(x) — Ag(x).

xeX

This is called the Lagrangian. It's easy to see that the FOCs of the
unconstrained maximization problem are our Lagrange multiplier
conditions.

» The multiplier puts a “price” on how much we violate each
constraint.

» If (x*, \*) solved the constrained maximization problem, then
if x* solves f(x) — A*g(x) then L(A\*) = f(x*).
» This is not obviously true, even though the FOCs are satisfied!
» For many problems we'll see, this is true.



Lagrange Multipliers

Now let's prove the theorem. We need a tool from Math for
Economists to show this

Theorem (Implicit Function Theorem)

Let f(x,y) be a continuously differentiable function

f:R"™™M — R™. Fix a point (a,b) s.t. f(a,b) =0. Suppose

Dy f(a, b) is invertible. Then there exists an open set U containing
a and a unique continuously differentiable function g : U — R"™
such that g(a) = b and f(x,g(x)) =0 on U. g satisfies the
differential equation

Dg(x) = —(Dyf(x, g(x))) ™ Dxf (x, g(x))-



Lagrange Multipliers

Consider the program

max f(x,y) s.t. g(x,y) =0

where f :R" - R, g:R" = R™, y € R™ and x € R"™™.

If the conditions of the implicit function theorem hold, we can find
an h:R"™™™ — R™ s.t. g(x,h(x)) =0 in a nbhd of any maximum.



Lagrange Multipliers

So at a maximum, (x*, y*), x* must solve

max f (x, h(x))

xeU

where h(x*) = y*, g(x,h(x)) =0 for all x € U and h is
differentiable.

» FOCs:
Dy f(x, h(x)) + Dyf(x, h(x))Dh(x) =0

» From the implicit function theorem we know
Dh(x) = —(Dyg(x, h(x)))~* Dxg(x, h(x))
So if X' = D, f(x, h(x))D,g(x, h(x))! then
Dif(x*,y") = NDxg(x",y")
» From the definition of A we also have

Dyf(x*,y*) = N'Dyg(x*,y)



Constraint Qualification

What did we need for this beyond the obvious (e.g.
differentiability)?

» to use the implicit function theorem, D, g(x*, y*) must be full
rank.

> We have some flexibility here, it doesn't really matter which

m components we called "y

P It's hard to assume this away. | can formulate any set of
constraints in a way that this condition is violated at every
feasible point.



Constraint Qualification - An Example

Consider the consumer problem

max x/2)1/2

st. pix+ p2y=m

This satisfies constraint qualification at every feasible point and is

solved by
m m

5. Y =5
2pm 2p2



Constraint Qualification - An Example
What if we instead tried to apply our tool to

max x1/2y1/2

st. (p1x+ poy — m)> =0
This is the exact same problem. But now the FOCs are

x12y2 = 3\py (p1x + poy — m)?

1/2

y Y2 = 3\pa(p1x + pay — m)?

1
2"
1

=X
2

which simplify to

1
f2x_1/2y1/2 =0
1
72X1/2y_1/2 =0

which is clearly not satisfied at the maximum.



Constraint Qualification

This example is a bit extreme, at every feasible point the
constraint has 0 gradient.

» In practice, this is more manageable.

» To find candidate maxes we need to find

» All points where the Lagrange multiplier conditions hold
> All points where Rank Dg(x*) # m.

P> If a max exists, it's one of these points



Inequality Constraints

Conceptually, there's no reason to require our consumer to spend
all their money. The consumer problem should be

g o0
st. p-x<m

What can we do with this? It turns out, Lagrange multipliers still
“work"



Non-negativity Constraints

Let's think about the simplest inequality constraints, constraints of

the form
X Z 0
Consider
max u(x)
st. x1 >0

Let x* be a max. Either x* >> 0 and optimality implies
Vu(x) =0or x; =0.



Non-negativity

Suppose x; = 0, x7 > 0 for all i ## 1. Then if | look at x* + dx it
must be that
u(x*+dx) —u(x) <0

for any dx small s.t. dx; > 0. This means approximately

n

Z ui(x*)dx; <0
i=1

which gives uj(x*) =0 for all i # 1 and

u(x*) <0



Non-negativity

So we have two cases. Either
xi =0 and u1(x*) < 0,ui(x*) =0Vi#1
or
x; >0 and Vu(x*) = 0.

We can formulate these conditions using Lagrange multipliers. It
must be that
Vu(x) = A(—1,0,0,...)

and
A>0

and
Ax1 =0

at any maximum.



KKT Conditions

Back to the consumer problem. Let's add a new variable s (for
“slack™), and instead solve

max _ u(x)
x€RM SER
st.prx+s=m

s>0

Ignoring non-negativity of the x's, this gives us Lagrange multiplier
condition



KKT Conditions

Now let's get rid of the auxiliary variables by noting:

A=p

and
Ss=m-—p-x.

We end up with the following conditions:

Vu(x

Ap
A(m—p-x)=0
0

yvv
I

v



KKT conditions

In general

Theorem (Karush-Kuhn-Tucker Conditions)

Let f : R" — R and g : R"” — R™, differentiable. Suppose x*
solves
max f(x) s.t g(x) <0

and rank Dg*(x*) = m* where g* is the vector of binding
constraints and m* is the number of binding constraints. Then
there exists a A € R™ such that

Df(x*) = X' Dg(x*)
g(x*)i <0 forallie{l,2,...m}
Nig(x*)i=0 forall i€ {1,2,...m}
Ai >0 forallie€{l1,2,. ..m}



KKT Conditions

We have

Df (x*) = X' Dg(x*)
g(x*)i<O0forallic{1,2,...m}
Nig(x*)i=0forallie{1,2,...m}
Ai>0forallie{l,2 . ..m}

» The first three conditions we could have essentially reached
mechanically from the equality constraint result.

» The fourth is new. It is a consequence of the inequality
constraint.

» For minimization problems, the multipliers must be negative.



Example - KKT

max xy

s.t. x2+y2 <1



Example - KKT

max xyz + z
st. x2+y2+2z<6
x,¥,z>0



Example - KKT

max X
X»)’GRJr

sty —(1-x)*<0



Example - Envy

There are two consumers, each of whom are jealous of the others
consumption, captured by utility function

ui(xi, xj) = xi — KXJ?

and there are in total X units of consumption in the economy. A
social planner solves

max  u1(xi, x2) + wa(x2, x1) s.t. x1 +x20 < X
x1,%€R

As a function of K, what is the efficient allocation? Does the
constraint bind?



Lagrangian
Let's think about the Lagrangian again

L(A) = max f(x) — Ag(x)

xeX
Let (x*,A\*) be a maximum and a corresponding multiplier that
satisfies the KKT conditions. Then for any A > 0
L(N\) = f(x)—
(\) = max F(x) — Ag(x)
> f(x*) — Ag(x7)
> f(x") = Ag(x") = f(x7)

where the third line comes from complementary slackness.
Therefore

E\nzlg L(X) > f(x¥)

This is called duality. It's reasonable to expect, but not obvious
that this > is an = for “nice” problems.



KKT Conditions

We're left with a few loose ends we'd like to tie up. The KKT
conditions aren’t quite necessary or sufficient.
» (Necessity) The KKT conditions don't hold at maxima where
the derivative matrix of the binding constraints is not full rank.
» (Sufficiency) If A > 0, we know the point can’t be a min. Is
that enough to tell us it's a max?
It turns out that we can make economically meaningful

assumptions that also ensure these conditions are both necessary
and sufficient.



