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Optimization

In economic modeling, we explicitly model choices. This done
through optimization.



A maximization problem

max
x ,y∈R2

+

xαyβ

s.t. p1x + p2y ≤ m
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A maximization problem

max
x ,y∈R2

+

xαyβ

s.t. p1x + p2y ≤ m

▶ The endogenous variables

▶ The exogenous variables

▶ The objective

▶ The constraints (the feasible set)



Some Examples

Profit Maximization:

max
q∈R+

qP(q)− c(q)



Some Examples

Utility maximization:

max
x∈Rn

+

u(x)

s.t. p · x ≤ m



Some Examples

Consumption/Savings:

max
c,s

T∑
t=0

δtu(ct)

s.t. ct + st = (1 + r)st−1 + w

sT = s−1 = 0

or in continuous time

max

∫ T

t=0
e−rtu(ct)

s.t. ṡt = rst + w − ct

s0 = sT = 0



Optimization

In this course we’re going to develop some basic tools for
non-linear optimization

▶ Our focus is primarily theoretical, we’ll develop the tools we
need to establish theoretical results in the subsequent
economics courses.

▶ This course only scratches the surface. I leave work on
numerical tools, stochastic optimal control, etc. to other
courses.



A very quick review

Existence:

▶ Knowing that a problem has a maximum is very important.

▶ The extreme value theorem tells us that any continuous
function with a compact domain has a maximum/minimum.

▶ This result is very general.

▶ For some of our problems, its application is a bit subtle. I’m

I’m mostly going to ignore questions of existence in this course.



A very quick review

Unconstrained optimization:

▶ First order conditions: ∇f (x) = 0 at an interior max.

▶ Second order conditions: D2f (x) is negative semidefinite at a
max. ∇f (x) = 0 and D2f (x) negative definite are sufficient
for a maximum.



Constrained Optimization

Remember the consumer problem:

max u(x1, x2)

s.t. p1x1 + p2x2 = m

Suppose I move x a little bit to (x1 + dx1, x2 + dx2). What has to
hold at a max?



Constrained Optimization

First, we need to make this tiny change while maintaining the
constraint, i.e.:

p1dx1 + p2dx2 = 0

and we know if these changes are small

u(x + dx)− u(x) ≈ dx1u1(x1, x2) + dx2u2(x1, x2).

Therefore at a max, for any feasible change

dx1u1(x1, x2) + dx2u2(x1, x2) ≈ 0



Constrained Optimization
We know that, at a max

p1dx1 + p2dx2 = 0

and
dx1u1(x1, x2) + dx2u2(x1, x2) = 0

Combining these:

dx1u1(x1, x2) =
p1
p2

dx1u2(x1, x2)

u1(x1, x2)

p1
=

u2(x1, x2)

p2

So, there exists a constant λ s.t.

u1(x1, x2)

p1
=

u2(x1, x2)

p2
= λ

Which gives us the familiar condition

∇u(x) = λ(p1, p2)
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Formalizing this

We did two things here:

▶ We used the constraint to identify how variations in x2
implicitly are determined by the perturbation we make to x1.

▶ We used this implicit function to make “first order conditions”

Let’s make things precise



Lagrange Multipliers

Theorem

Let f : Rn → R and g : Rn → Rm. Let x∗ be a solution to

max f (x) s.t. g(x) = 0

and suppose Dg(x∗) has rank m. Then there exists a unique
Lagrange multiplier λ ∈ Rm such that Df (x∗) = λ′Dg(x∗).



Lagrange Multipliers

Geometrically, what does it mean for such a λ to exist?



Example

Consider the consumer problem

max
x ,y∈R+

x1/2y1/2

s.t. p1x + p2y = m

The Lagrange multiplier theorem gives us “FOCs”

1

2
x−1/2y1/2 = λp1

1

2
x1/2y−1/2 = λp2

Turns our maximization problem into a system of three non-linear
equations with three unknowns



Example

Combining the FOCs, we get

1

2p1
x−1/2y1/2 =

1

2p2
x1/2y−1/2

p2y = p1x

Plugging this into the constraint, we get

x =
m

2p1
, y =

m

2p2



Example

We can also apply this theorem to problems with more than one
constraint. Consider:

max 4y − 2z

s.t. 2x − y − z = 2

x2 + y2 = 1



Lagrangian

Before we get to the proof, one more useful object. We can define
the function

L(λ) = max
x∈X

f (x)− λg(x).

This is called the Lagrangian. It’s easy to see that the FOCs of the
unconstrained maximization problem are our Lagrange multiplier
conditions.

▶ The multiplier puts a “price” on how much we violate each
constraint.

▶ If (x∗, λ∗) solved the constrained maximization problem, then
if x∗ solves f (x)− λ∗g(x) then L(λ∗) = f (x∗).
▶ This is not obviously true, even though the FOCs are satisfied!

▶ For many problems we’ll see, this is true.



Lagrange Multipliers

Now let’s prove the theorem. We need a tool from Math for
Economists to show this

Theorem (Implicit Function Theorem)

Let f (x , y) be a continuously differentiable function
f : Rn+m → Rm. Fix a point (a, b) s.t. f (a, b) = 0. Suppose
Dy f (a, b) is invertible. Then there exists an open set U containing
a and a unique continuously differentiable function g : U → Rm

such that g(a) = b and f (x , g(x)) = 0 on U. g satisfies the
differential equation

Dg(x) = −(Dy f (x , g(x)))
−1Dx f (x , g(x)).



Lagrange Multipliers

Consider the program

max f (x , y) s.t. g(x , y) = 0

where f : Rn → R, g : Rn → Rm, y ∈ Rm and x ∈ Rn−m.

If the conditions of the implicit function theorem hold, we can find
an h : Rn−m → Rm s.t. g(x , h(x)) = 0 in a nbhd of any maximum.



Lagrange Multipliers
So at a maximum, (x∗, y∗), x∗ must solve

max
x∈U

f (x , h(x))

where h(x∗) = y∗, g(x , h(x)) = 0 for all x ∈ U and h is
differentiable.

▶ FOCs:
Dx f (x , h(x)) + Dy f (x , h(x))Dh(x) = 0

▶ From the implicit function theorem we know

Dh(x) = −(Dyg(x , h(x)))
−1Dxg(x , h(x))

So if λ′ = Dy f (x , h(x))Dyg(x , h(x))
−1 then

Dx f (x
∗, y∗) = λ′Dxg(x

∗, y∗)

▶ From the definition of λ we also have

Dy f (x
∗, y∗) = λ′Dyg(x

∗, y∗)



Constraint Qualification

What did we need for this beyond the obvious (e.g.
differentiability)?

▶ to use the implicit function theorem, Dyg(x
∗, y∗) must be full

rank.

▶ We have some flexibility here, it doesn’t really matter which
m components we called “y”

▶ It’s hard to assume this away. I can formulate any set of
constraints in a way that this condition is violated at every
feasible point.



Constraint Qualification - An Example

Consider the consumer problem

max x1/2y1/2

s.t. p1x + p2y = m

This satisfies constraint qualification at every feasible point and is
solved by

x =
m

2p1
, y =

m

2p2



Constraint Qualification - An Example
What if we instead tried to apply our tool to

max x1/2y1/2

s.t. (p1x + p2y −m)3 = 0

This is the exact same problem. But now the FOCs are

1

2
x−1/2y1/2 = 3λp1(p1x + p2y −m)2

1

2
x1/2y−1/2 = 3λp2(p1x + p2y −m)2

which simplify to

1

2
x−1/2y1/2 = 0

1

2
x1/2y−1/2 = 0

which is clearly not satisfied at the maximum.



Constraint Qualification

This example is a bit extreme, at every feasible point the
constraint has 0 gradient.

▶ In practice, this is more manageable.
▶ To find candidate maxes we need to find

▶ All points where the Lagrange multiplier conditions hold
▶ All points where Rank Dg(x∗) ̸= m.

▶ If a max exists, it’s one of these points



Inequality Constraints

Conceptually, there’s no reason to require our consumer to spend
all their money. The consumer problem should be

max
x∈Rn

+

u(x)

s.t. p · x ≤ m

What can we do with this? It turns out, Lagrange multipliers still
“work”



Non-negativity Constraints

Let’s think about the simplest inequality constraints, constraints of
the form

xi ≥ 0

Consider

max u(x)

s.t. x1 ≥ 0

Let x∗ be a max. Either x∗ >> 0 and optimality implies
∇u(x) = 0 or x∗1 = 0.



Non-negativity

Suppose x∗1 = 0, x∗i > 0 for all i ̸= 1. Then if I look at x∗ + dx it
must be that

u(x∗ + dx)− u(x) ≤ 0

for any dx small s.t. dx1 ≥ 0. This means approximately

n∑
i=1

ui (x
∗)dxi ≤ 0

which gives ui (x
∗) = 0 for all i ̸= 1 and

u1(x
∗) ≤ 0



Non-negativity

So we have two cases. Either

x∗1 = 0 and u1(x
∗) ≤ 0, ui (x

∗) = 0∀i ̸= 1

or
x∗1 > 0 and ∇u(x∗) = 0.

We can formulate these conditions using Lagrange multipliers. It
must be that

∇u(x) = λ(−1, 0, 0, . . .)

and
λ ≥ 0

and
λx1 = 0

at any maximum.



KKT Conditions

Back to the consumer problem. Let’s add a new variable s (for
“slack”), and instead solve

max
x∈Rn

+,s∈R
u(x)

s.t. p · x + s = m

s ≥ 0

Ignoring non-negativity of the x ’s, this gives us Lagrange multiplier
condition

∇u(x) = λp

and the additional conditions

0 = λ− µ

µ(−s) = 0

µ ≥ 0



KKT Conditions

Now let’s get rid of the auxiliary variables by noting:

λ = µ

and
s = m − p · x .

We end up with the following conditions:

∇u(x) = λp

λ(m − p · x) = 0

λ ≥ 0



KKT conditions

In general

Theorem (Karush-Kuhn-Tucker Conditions)

Let f : Rn → R and g : Rn → Rm, differentiable. Suppose x∗

solves
max f (x) s.t g(x) ≤ 0

and rank Dg∗(x∗) = m∗ where g∗ is the vector of binding
constraints and m∗ is the number of binding constraints. Then
there exists a λ ∈ Rm such that

Df (x∗) = λ′Dg(x∗)

g(x∗)i ≤ 0 for all i ∈ {1, 2, . . .m}
λig(x

∗)i = 0 for all i ∈ {1, 2, . . .m}
λi ≥ 0 for all i ∈ {1, 2, . . .m}



KKT Conditions

We have

Df (x∗) = λ′Dg(x∗)

g(x∗)i ≤ 0 for all i ∈ {1, 2, . . .m}
λig(x

∗)i = 0 for all i ∈ {1, 2, . . .m}
λi ≥ 0 for all i ∈ {1, 2, . . .m}

▶ The first three conditions we could have essentially reached
mechanically from the equality constraint result.

▶ The fourth is new. It is a consequence of the inequality
constraint.

▶ For minimization problems, the multipliers must be negative.



Example - KKT

max xy

s.t. x2 + y2 ≤ 1



Example - KKT

max xyz + z

s.t. x2 + y2 + z ≤ 6

x , y , z ≥ 0



Example - KKT

max
x ,y∈R+

x

s.t y − (1− x)3 ≤ 0



Example - Envy

There are two consumers, each of whom are jealous of the others
consumption, captured by utility function

ui (xi , xj) = xi − Kx2j

and there are in total X units of consumption in the economy. A
social planner solves

max
x1,x2∈R+

u1(x1, x2) + u2(x2, x1) s.t. x1 + x2 ≤ X

As a function of K , what is the efficient allocation? Does the
constraint bind?



Lagrangian

Let’s think about the Lagrangian again

L(λ) = max
x∈X

f (x)− λg(x)

Let (x∗, λ∗) be a maximum and a corresponding multiplier that
satisfies the KKT conditions. Then for any λ ≥ 0

L(λ) = max
x∈X

f (x)− λg(x)

≥ f (x∗)− λg(x∗)

≥ f (x∗)− λ∗g(x∗) = f (x∗)

where the third line comes from complementary slackness.
Therefore

min
λ≥0

L(λ) ≥ f (x∗)

This is called duality. It’s reasonable to expect, but not obvious
that this ≥ is an = for “nice” problems.



KKT Conditions

We’re left with a few loose ends we’d like to tie up. The KKT
conditions aren’t quite necessary or sufficient.

▶ (Necessity) The KKT conditions don’t hold at maxima where
the derivative matrix of the binding constraints is not full rank.

▶ (Sufficiency) If λ > 0, we know the point can’t be a min. Is
that enough to tell us it’s a max?

It turns out that we can make economically meaningful
assumptions that also ensure these conditions are both necessary
and sufficient.


