Some More Math for Economists: Constrained Optimization

Spring 2023

Optimization

In economic modeling, we explicitly model choices. This done through optimization.

$$\max_{\substack{x,y \in \mathbb{R}^2_+}} x^{\alpha} y^{\beta}$$

s.t. $p_1 x + p_2 y \le m$

The endogenous variables

- The endogenous variables
- The exogenous variables

$$\max_{\substack{x,y \in \mathbb{R}^2_+}} \frac{x^{\alpha} y^{\beta}}{s.t. \ p_1 x + p_2 y \le m}$$
s.t. p_1x + p_2y $\le m$

- The endogenous variables
- The exogenous variables
- ► The objective

- The endogenous variables
- The exogenous variables
- ► The objective
- The constraints (the feasible set)

Some Examples

Profit Maximization:

$$\max_{q\in\mathbb{R}_+}qP(q)-c(q)$$

Some Examples

Utility maximization:

 $\max_{x \in \mathbb{R}^n_+} u(x)$
s.t. $p \cdot x \le m$

Some Examples

Consumption/Savings:

$$\max_{c,s} \sum_{t=0}^{T} \delta^{t} u(c_{t})$$

s.t. $c_{t} + s_{t} = (1+r)s_{t-1} + w$
 $s_{T} = s_{-1} = 0$

or in continuous time

$$\max \int_{t=0}^{T} e^{-rt} u(c_t)$$

s.t. $\dot{s}_t = rs_t + w - c_t$
 $s_0 = s_T = 0$

Optimization

In this course we're going to develop some basic tools for non-linear optimization

- Our focus is primarily theoretical, we'll develop the tools we need to establish theoretical results in the subsequent economics courses.
- This course only scratches the surface. I leave work on numerical tools, stochastic optimal control, etc. to other courses.

A very quick review

Existence:

- Knowing that a problem has a maximum is very important.
- The extreme value theorem tells us that any continuous function with a compact domain has a maximum/minimum.
- ► This result is very general.
- ► For some of our problems, its application is a bit subtle. I'm I'm mostly going to ignore questions of existence in this course.

Unconstrained optimization:

- First order conditions: $\nabla f(x) = 0$ at an interior max.
- Second order conditions: D²f(x) is negative semidefinite at a max. ∇f(x) = 0 and D²f(x) negative definite are sufficient for a maximum.

Remember the consumer problem:

 $\max u(x_1, x_2)$
s.t. $p_1 x_1 + p_2 x_2 = m$

Suppose I move x a little bit to $(x_1 + dx_1, x_2 + dx_2)$. What has to hold at a max?

First, we need to make this tiny change while maintaining the constraint, i.e.:

$$p_1dx_1+p_2dx_2=0$$

and we know if these changes are small

$$u(x + dx) - u(x) \approx dx_1 u_1(x_1, x_2) + dx_2 u_2(x_1, x_2).$$

Therefore at a max, for any feasible change

$$dx_1u_1(x_1, x_2) + dx_2u_2(x_1, x_2) \approx 0$$

We know that, at a max

$$p_1dx_1+p_2dx_2=0$$

 and

$$dx_1u_1(x_1, x_2) + dx_2u_2(x_1, x_2) = 0$$

We know that, at a max

$$p_1dx_1+p_2dx_2=0$$

 and

$$dx_1u_1(x_1, x_2) + dx_2u_2(x_1, x_2) = 0$$

Combining these:

$$dx_1u_1(x_1, x_2) = \frac{p_1}{p_2}dx_1u_2(x_1, x_2)$$
$$\frac{u_1(x_1, x_2)}{p_1} = \frac{u_2(x_1, x_2)}{p_2}$$

We know that, at a max

$$p_1dx_1+p_2dx_2=0$$

and

$$dx_1u_1(x_1, x_2) + dx_2u_2(x_1, x_2) = 0$$

Combining these:

$$dx_1 u_1(x_1, x_2) = \frac{p_1}{p_2} dx_1 u_2(x_1, x_2)$$
$$\frac{u_1(x_1, x_2)}{p_1} = \frac{u_2(x_1, x_2)}{p_2}$$

So, there exists a constant λ s.t.

$$\frac{u_1(x_1, x_2)}{p_1} = \frac{u_2(x_1, x_2)}{p_2} = \lambda$$

Which gives us the familiar condition

$$\nabla u(x) = \lambda(p_1, p_2)$$

We did two things here:

- We used the constraint to identify how variations in x₂ implicitly are determined by the perturbation we make to x₁.
- ► We used this implicit function to make "first order conditions" Let's make things precise

Lagrange Multipliers

Theorem

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$. Let x^* be a solution to

 $\max f(x) \ s.t. \ g(x) = 0$

and suppose $Dg(x^*)$ has rank m. Then there exists a unique Lagrange multiplier $\lambda \in \mathbb{R}^m$ such that $Df(x^*) = \lambda' Dg(x^*)$.

Lagrange Multipliers

Geometrically, what does it mean for such a λ to exist?

Example

Consider the consumer problem

$$\max_{\substack{x,y \in \mathbb{R}_+ \\ \text{s.t. } p_1 x + p_2 y = m}} x^{1/2} y^{1/2}$$

The Lagrange multiplier theorem gives us "FOCs"

$$\frac{1}{2}x^{-1/2}y^{1/2} = \lambda p_1$$
$$\frac{1}{2}x^{1/2}y^{-1/2} = \lambda p_2$$

Turns our maximization problem into a system of three non-linear equations with three unknowns

Example

Combining the FOCs, we get

$$\frac{1}{2p_1}x^{-1/2}y^{1/2} = \frac{1}{2p_2}x^{1/2}y^{-1/2}$$
$$p_2y = p_1x$$

Plugging this into the constraint, we get

$$x = \frac{m}{2p_1}, y = \frac{m}{2p_2}$$

Example

We can also apply this theorem to problems with more than one constraint. Consider:

max
$$4y - 2z$$

s.t. $2x - y - z = 2$
 $x^{2} + y^{2} = 1$

Lagrangian

Before we get to the proof, one more useful object. We can define the function

$$L(\lambda) = \max_{x \in X} f(x) - \lambda g(x).$$

This is called the Lagrangian. It's easy to see that the FOCs of the unconstrained maximization problem are our Lagrange multiplier conditions.

- The multiplier puts a "price" on how much we violate each constraint.
- If (x*, λ*) solved the constrained maximization problem, then if x* solves f(x) − λ*g(x) then L(λ*) = f(x*).

This is not obviously true, even though the FOCs are satisfied!

► For many problems we'll see, this is true.

Lagrange Multipliers

Now let's prove the theorem. We need a tool from Math for Economists to show this

Theorem (Implicit Function Theorem)

Let f(x, y) be a continuously differentiable function $f : \mathbb{R}^{n+m} \to \mathbb{R}^m$. Fix a point (a, b) s.t. f(a, b) = 0. Suppose $D_y f(a, b)$ is invertible. Then there exists an open set U containing a and a unique continuously differentiable function $g : U \to \mathbb{R}^m$ such that g(a) = b and f(x, g(x)) = 0 on U. g satisfies the differential equation

$$Dg(x) = -(D_y f(x, g(x)))^{-1} D_x f(x, g(x)).$$

Consider the program

$$\max f(x,y) \text{ s.t. } g(x,y) = 0$$

where $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}^m$, $y \in \mathbb{R}^m$ and $x \in \mathbb{R}^{n-m}$.

If the conditions of the implicit function theorem hold, we can find an $h : \mathbb{R}^{n-m} \to \mathbb{R}^m$ s.t. g(x, h(x)) = 0 in a nbhd of any maximum.

Lagrange Multipliers

So at a maximum, (x^*, y^*) , x^* must solve

 $\max_{x\in U}f(x,h(x))$

where $h(x^*) = y^*$, g(x, h(x)) = 0 for all $x \in U$ and h is differentiable.

FOCs:

$$D_x f(x, h(x)) + D_y f(x, h(x)) Dh(x) = 0$$

From the implicit function theorem we know

$$Dh(x) = -(D_y g(x, h(x)))^{-1} D_x g(x, h(x))$$

So if $\lambda' = D_y f(x, h(x)) D_y g(x, h(x))^{-1}$ then
$$D_x f(x^*, y^*) = \lambda' D_x g(x^*, y^*)$$

From the definition of λ we also have

$$D_y f(x^*, y^*) = \lambda' D_y g(x^*, y^*)$$

Constraint Qualification

What did we need for this beyond the obvious (e.g. differentiability)?

- to use the implicit function theorem, Dyg(x*, y*) must be full rank.
- We have some flexibility here, it doesn't really matter which m components we called "y"
- It's hard to assume this away. I can formulate any set of constraints in a way that this condition is violated at every feasible point.

Constraint Qualification - An Example

Consider the consumer problem

max
$$x^{1/2}y^{1/2}$$

s.t. $p_1x + p_2y = m$

This satisfies constraint qualification at every feasible point and is solved by

$$x=\frac{m}{2p_1}, y=\frac{m}{2p_2}$$

Constraint Qualification - An Example

What if we instead tried to apply our tool to

$$\max x^{1/2} y^{1/2}$$

s.t. $(p_1 x + p_2 y - m)^3 = 0$

This is the exact same problem. But now the FOCs are

$$\frac{1}{2}x^{-1/2}y^{1/2} = 3\lambda p_1(p_1x + p_2y - m)^2$$
$$\frac{1}{2}x^{1/2}y^{-1/2} = 3\lambda p_2(p_1x + p_2y - m)^2$$

which simplify to

$$\frac{1}{2}x^{-1/2}y^{1/2} = 0$$
$$\frac{1}{2}x^{1/2}y^{-1/2} = 0$$

which is clearly not satisfied at the maximum.

This example is a bit extreme, at every feasible point the constraint has 0 gradient.

- In practice, this is more manageable.
- To find candidate maxes we need to find
 - All points where the Lagrange multiplier conditions hold
 - All points where Rank $Dg(x^*) \neq m$.
- If a max exists, it's one of these points

Conceptually, there's no reason to require our consumer to spend all their money. The consumer problem should be

 $\max_{x\in\mathbb{R}^n_+}u(x)$ s.t. $p\cdot x\leq m$

What can we do with this? It turns out, Lagrange multipliers still "work"

Non-negativity Constraints

Let's think about the simplest inequality constraints, constraints of the form

$$x_i \ge 0$$

Consider

 $\max u(x)$
s.t. $x_1 \ge 0$

Let x^* be a max. Either $x^* >> 0$ and optimality implies $\nabla u(x) = 0$ or $x_1^* = 0$.

Non-negativity

Suppose $x_1^* = 0$, $x_i^* > 0$ for all $i \neq 1$. Then if I look at $x^* + dx$ it must be that

$$u(x^*+dx)-u(x)\leq 0$$

for any dx small s.t. $dx_1 \ge 0$. This means approximately

$$\sum_{i=1}^n u_i(x^*) dx_i \leq 0$$

which gives $u_i(x^*) = 0$ for all $i \neq 1$ and

 $u_1(x^*) \leq 0$

Non-negativity

So we have two cases. Either

$$x_1^*=0$$
 and $u_1(x^*)\leq 0,$ $u_i(x^*)=0$ $orall i
eq 1$

or

$$x_1^* > 0$$
 and $\nabla u(x^*) = 0$.

We can formulate these conditions using Lagrange multipliers. It must be that

$$\nabla u(x) = \lambda(-1, 0, 0, \ldots)$$

 and

 $\lambda \geq \mathbf{0}$

and

$$\lambda x_1 = 0$$

at any maximum.

KKT Conditions

Back to the consumer problem. Let's add a new variable s (for "slack"), and instead solve

$$\max_{x \in \mathbb{R}^{n}_{+}, s \in \mathbb{R}} u(x)$$

s.t. $p \cdot x + s = m$
 $s \ge 0$

Ignoring non-negativity of the x's, this gives us Lagrange multiplier condition

$$\nabla u(x) = \lambda p$$

and the additional conditions

$$egin{aligned} 0 &= \lambda - \mu \ \mu(-s) &= 0 \ \mu &\geq 0 \end{aligned}$$

KKT Conditions

Now let's get rid of the auxiliary variables by noting:

$$\lambda = \mu$$

and

$$s = m - p \cdot x$$
.

We end up with the following conditions:

$$abla u(x) = \lambda p$$
 $\lambda(m - p \cdot x) = 0$
 $\lambda \ge 0$

KKT conditions

In general

Theorem (Karush-Kuhn-Tucker Conditions)

Let $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}^m$, differentiable. Suppose x^* solves

$$\max f(x) \ s.t \ g(x) \leq 0$$

and rank $Dg^*(x^*) = m^*$ where g^* is the vector of binding constraints and m^* is the number of binding constraints. Then there exists a $\lambda \in \mathbb{R}^m$ such that

$$\begin{aligned} Df(x^*) &= \lambda' Dg(x^*) \\ g(x^*)_i &\leq 0 \text{ for all } i \in \{1, 2, \dots m\} \\ \lambda_i g(x^*)_i &= 0 \text{ for all } i \in \{1, 2, \dots m\} \\ \lambda_i &\geq 0 \text{ for all } i \in \{1, 2, \dots m\} \end{aligned}$$

KKT Conditions

We have

$$\begin{aligned} Df(x^*) &= \lambda' Dg(x^*) \\ g(x^*)_i &\leq 0 \text{ for all } i \in \{1, 2, \dots m\} \\ \lambda_i g(x^*)_i &= 0 \text{ for all } i \in \{1, 2, \dots m\} \\ \lambda_i &\geq 0 \text{ for all } i \in \{1, 2, \dots m\} \end{aligned}$$

- The first three conditions we could have essentially reached mechanically from the equality constraint result.
- The fourth is new. It is a consequence of the inequality constraint.
- For minimization problems, the multipliers must be negative.

Example - KKT

$\max xy$
s.t. $x^2 + y^2 \le 1$

Example - KKT

$$\max xyz + z$$

s.t. $x^2 + y^2 + z \le 6$
 $x, y, z \ge 0$

Example - KKT

$$\max_{\substack{x,y \in \mathbb{R}_+ \\ \text{s.t } y - (1-x)^3 \le 0}}^{\max x}$$

Example - Envy

There are two consumers, each of whom are jealous of the others consumption, captured by utility function

$$u_i(x_i, x_j) = x_i - K x_j^2$$

and there are in total X units of consumption in the economy. A social planner solves

$$\max_{x_1,x_2 \in \mathbb{R}_+} u_1(x_1,x_2) + u_2(x_2,x_1) ext{ s.t. } x_1 + x_2 \leq X$$

As a function of K, what is the efficient allocation? Does the constraint bind?

Lagrangian

Let's think about the Lagrangian again

$$L(\lambda) = \max_{x \in X} f(x) - \lambda g(x)$$

Let (x^*, λ^*) be a maximum and a corresponding multiplier that satisfies the KKT conditions. Then for any $\lambda \ge 0$

$$egin{aligned} \mathcal{L}(\lambda) &= \max_{x \in X} f(x) - \lambda g(x) \ &\geq f(x^*) - \lambda g(x^*) \ &\geq f(x^*) - \lambda^* g(x^*) = f(x^*) \end{aligned}$$

where the third line comes from complementary slackness. Therefore

$$\min_{\lambda \ge 0} L(\lambda) \ge f(x^*)$$

This is called duality. It's reasonable to expect, but not obvious that this \geq is an = for "nice" problems.

KKT Conditions

We're left with a few loose ends we'd like to tie up. The KKT conditions aren't quite necessary or sufficient.

- (Necessity) The KKT conditions don't hold at maxima where the derivative matrix of the binding constraints is not full rank.
- ► (Sufficiency) If λ > 0, we know the point can't be a min. Is that enough to tell us it's a max?

It turns out that we can make economically meaningful assumptions that also ensure these conditions are both necessary and sufficient.