Some More Math for Economists:
 Constrained Optimization

Spring 2023

Optimization

In economic modeling, we explicitly model choices. This done through optimization.

A maximization problem

$$
\begin{aligned}
& \max _{x, y \in \mathbb{R}_{+}^{2}} x^{\alpha} y^{\beta} \\
& \text { s.t. } p_{1} x+p_{2} y \leq m
\end{aligned}
$$

A maximization problem

$$
\begin{aligned}
& \max _{x, y \in \mathbb{R}_{+}^{2}} x^{\alpha} y^{\beta} \\
& \text { s.t. } p_{1} x+p_{2} y \leq m
\end{aligned}
$$

- The endogenous variables

A maximization problem

$$
\begin{aligned}
& \max _{x, y \in \mathbb{R}_{+}^{2}} x^{\alpha} y^{\beta} \\
& \text { s.t. } p_{1} x+p_{2} y \leq m
\end{aligned}
$$

- The endogenous variables
- The exogenous variables

A maximization problem

$$
\begin{aligned}
& \max _{x, y \in \mathbb{R}_{+}^{2}} x^{\alpha} y^{\beta} \\
& \text { s.t. } p_{1} x+p_{2} y \leq m
\end{aligned}
$$

- The endogenous variables
- The exogenous variables
- The objective

A maximization problem

$$
\begin{aligned}
& \max _{x, y \in \mathbb{R}_{+}^{2}} x^{\alpha} y^{\beta} \\
& \text { s.t. } p_{1} x+p_{2} y \leq m
\end{aligned}
$$

- The endogenous variables
- The exogenous variables
- The objective
- The constraints (the feasible set)

Some Examples

Profit Maximization:

$$
\max _{q \in \mathbb{R}_{+}} q P(q)-c(q)
$$

Some Examples

Utility maximization:

$$
\begin{aligned}
& \max _{x \in \mathbb{R}_{+}^{n}} u(x) \\
& \text { s.t. } p \cdot x \leq m
\end{aligned}
$$

Some Examples

Consumption/Savings:

$$
\begin{aligned}
& \max _{c, s} \sum_{t=0}^{T} \delta^{t} u\left(c_{t}\right) \\
& \text { s.t. } c_{t}+s_{t}=(1+r) s_{t-1}+w \\
& s_{T}=s_{-1}=0
\end{aligned}
$$

or in continuous time

$$
\begin{aligned}
& \max \int_{t=0}^{T} e^{-r t} u\left(c_{t}\right) \\
& \text { s.t. } \dot{s}_{t}=r s_{t}+w-c_{t} \\
& s_{0}=s_{T}=0
\end{aligned}
$$

Optimization

In this course we're going to develop some basic tools for non-linear optimization

- Our focus is primarily theoretical, we'll develop the tools we need to establish theoretical results in the subsequent economics courses.
- This course only scratches the surface. I leave work on numerical tools, stochastic optimal control, etc. to other courses.

A very quick review

Existence:

- Knowing that a problem has a maximum is very important.
- The extreme value theorem tells us that any continuous function with a compact domain has a maximum/minimum.
- This result is very general.
- For some of our problems, its application is a bit subtle. I'm

I'm mostly going to ignore questions of existence in this course.

A very quick review

Unconstrained optimization:

- First order conditions: $\nabla f(x)=0$ at an interior max.
- Second order conditions: $D^{2} f(x)$ is negative semidefinite at a max. $\nabla f(x)=0$ and $D^{2} f(x)$ negative definite are sufficient for a maximum.

Constrained Optimization

Remember the consumer problem:

$$
\begin{aligned}
& \max u\left(x_{1}, x_{2}\right) \\
& \text { s.t. } p_{1} x_{1}+p_{2} x_{2}=m
\end{aligned}
$$

Suppose I move x a little bit to $\left(x_{1}+d x_{1}, x_{2}+d x_{2}\right)$. What has to hold at a max?

Constrained Optimization

First, we need to make this tiny change while maintaining the constraint, i.e.:

$$
p_{1} d x_{1}+p_{2} d x_{2}=0
$$

and we know if these changes are small

$$
u(x+d x)-u(x) \approx d x_{1} u_{1}\left(x_{1}, x_{2}\right)+d x_{2} u_{2}\left(x_{1}, x_{2}\right)
$$

Therefore at a max, for any feasible change

$$
d x_{1} u_{1}\left(x_{1}, x_{2}\right)+d x_{2} u_{2}\left(x_{1}, x_{2}\right) \approx 0
$$

Constrained Optimization

We know that, at a max

$$
p_{1} d x_{1}+p_{2} d x_{2}=0
$$

and

$$
d x_{1} u_{1}\left(x_{1}, x_{2}\right)+d x_{2} u_{2}\left(x_{1}, x_{2}\right)=0
$$

Constrained Optimization

We know that, at a max

$$
p_{1} d x_{1}+p_{2} d x_{2}=0
$$

and

$$
d x_{1} u_{1}\left(x_{1}, x_{2}\right)+d x_{2} u_{2}\left(x_{1}, x_{2}\right)=0
$$

Combining these:

$$
\begin{aligned}
d x_{1} u_{1}\left(x_{1}, x_{2}\right) & =\frac{p_{1}}{p_{2}} d x_{1} u_{2}\left(x_{1}, x_{2}\right) \\
\frac{u_{1}\left(x_{1}, x_{2}\right)}{p_{1}} & =\frac{u_{2}\left(x_{1}, x_{2}\right)}{p_{2}}
\end{aligned}
$$

Constrained Optimization

We know that, at a max

$$
p_{1} d x_{1}+p_{2} d x_{2}=0
$$

and

$$
d x_{1} u_{1}\left(x_{1}, x_{2}\right)+d x_{2} u_{2}\left(x_{1}, x_{2}\right)=0
$$

Combining these:

$$
\begin{aligned}
d x_{1} u_{1}\left(x_{1}, x_{2}\right) & =\frac{p_{1}}{p_{2}} d x_{1} u_{2}\left(x_{1}, x_{2}\right) \\
\frac{u_{1}\left(x_{1}, x_{2}\right)}{p_{1}} & =\frac{u_{2}\left(x_{1}, x_{2}\right)}{p_{2}}
\end{aligned}
$$

So, there exists a constant λ s.t.

$$
\frac{u_{1}\left(x_{1}, x_{2}\right)}{p_{1}}=\frac{u_{2}\left(x_{1}, x_{2}\right)}{p_{2}}=\lambda
$$

Which gives us the familiar condition

$$
\nabla u(x)=\lambda\left(p_{1}, p_{2}\right)
$$

Formalizing this

We did two things here:

- We used the constraint to identify how variations in x_{2} implicitly are determined by the perturbation we make to x_{1}.
- We used this implicit function to make "first order conditions"

Let's make things precise

Lagrange Multipliers

Theorem
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let x^{*} be a solution to

$$
\max f(x) \text { s.t. } g(x)=0
$$

and suppose $D g\left(x^{*}\right)$ has rank m. Then there exists a unique Lagrange multiplier $\lambda \in \mathbb{R}^{m}$ such that $\operatorname{Df}\left(x^{*}\right)=\lambda^{\prime} D g\left(x^{*}\right)$.

Lagrange Multipliers

Geometrically, what does it mean for such a λ to exist?

Example

Consider the consumer problem

$$
\begin{aligned}
& \max _{x, y \in \mathbb{R}_{+}} x^{1 / 2} y^{1 / 2} \\
& \text { s.t. } p_{1} x+p_{2} y=m
\end{aligned}
$$

The Lagrange multiplier theorem gives us "FOCs"

$$
\begin{aligned}
& \frac{1}{2} x^{-1 / 2} y^{1 / 2}=\lambda p_{1} \\
& \frac{1}{2} x^{1 / 2} y^{-1 / 2}=\lambda p_{2}
\end{aligned}
$$

Turns our maximization problem into a system of three non-linear equations with three unknowns

Example

Combining the FOCs, we get

$$
\begin{aligned}
\frac{1}{2 p_{1}} x^{-1 / 2} y^{1 / 2} & =\frac{1}{2 p_{2}} x^{1 / 2} y^{-1 / 2} \\
p_{2} y & =p_{1} x
\end{aligned}
$$

Plugging this into the constraint, we get

$$
x=\frac{m}{2 p_{1}}, y=\frac{m}{2 p_{2}}
$$

Example

We can also apply this theorem to problems with more than one constraint. Consider:

$$
\begin{aligned}
& \max 4 y-2 z \\
& \text { s.t. } 2 x-y-z=2 \\
& x^{2}+y^{2}=1
\end{aligned}
$$

Lagrangian

Before we get to the proof, one more useful object. We can define the function

$$
L(\lambda)=\max _{x \in X} f(x)-\lambda g(x)
$$

This is called the Lagrangian. It's easy to see that the FOCs of the unconstrained maximization problem are our Lagrange multiplier conditions.

- The multiplier puts a "price" on how much we violate each constraint.
- If $\left(x^{*}, \lambda^{*}\right)$ solved the constrained maximization problem, then if x^{*} solves $f(x)-\lambda^{*} g(x)$ then $L\left(\lambda^{*}\right)=f\left(x^{*}\right)$.
- This is not obviously true, even though the FOCs are satisfied!
- For many problems we'll see, this is true.

Lagrange Multipliers

Now let's prove the theorem. We need a tool from Math for Economists to show this

Theorem (Implicit Function Theorem)

Let $f(x, y)$ be a continuously differentiable function $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{m}$. Fix a point (a, b) s.t. $f(a, b)=0$. Suppose $D_{y} f(a, b)$ is invertible. Then there exists an open set U containing a and a unique continuously differentiable function $g: U \rightarrow \mathbb{R}^{m}$ such that $g(a)=b$ and $f(x, g(x))=0$ on U. g satisfies the differential equation

$$
D g(x)=-\left(D_{y} f(x, g(x))\right)^{-1} D_{x} f(x, g(x))
$$

Lagrange Multipliers

Consider the program

$$
\max f(x, y) \text { s.t. } g(x, y)=0
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, y \in \mathbb{R}^{m}$ and $x \in \mathbb{R}^{n-m}$.
If the conditions of the implicit function theorem hold, we can find an $h: \mathbb{R}^{n-m} \rightarrow \mathbb{R}^{m}$ s.t. $g(x, h(x))=0$ in a nbhd of any maximum.

Lagrange Multipliers

So at a maximum, $\left(x^{*}, y^{*}\right), x^{*}$ must solve

$$
\max _{x \in U} f(x, h(x))
$$

where $h\left(x^{*}\right)=y^{*}, g(x, h(x))=0$ for all $x \in U$ and h is differentiable.

- FOCs:

$$
D_{x} f(x, h(x))+D_{y} f(x, h(x)) D h(x)=0
$$

- From the implicit function theorem we know

$$
D h(x)=-\left(D_{y} g(x, h(x))\right)^{-1} D_{x} g(x, h(x))
$$

So if $\lambda^{\prime}=D_{y} f(x, h(x)) D_{y} g(x, h(x))^{-1}$ then

$$
D_{x} f\left(x^{*}, y^{*}\right)=\lambda^{\prime} D_{x} g\left(x^{*}, y^{*}\right)
$$

- From the definition of λ we also have

$$
D_{y} f\left(x^{*}, y^{*}\right)=\lambda^{\prime} D_{y} g\left(x^{*}, y^{*}\right)
$$

Constraint Qualification

What did we need for this beyond the obvious (e.g. differentiability)?

- to use the implicit function theorem, $D_{y} g\left(x^{*}, y^{*}\right)$ must be full rank.
- We have some flexibility here, it doesn't really matter which m components we called " y "
- It's hard to assume this away. I can formulate any set of constraints in a way that this condition is violated at every feasible point.

Constraint Qualification - An Example

Consider the consumer problem

$$
\begin{aligned}
& \max x^{1 / 2} y^{1 / 2} \\
& \text { s.t. } p_{1} x+p_{2} y=m
\end{aligned}
$$

This satisfies constraint qualification at every feasible point and is solved by

$$
x=\frac{m}{2 p_{1}}, y=\frac{m}{2 p_{2}}
$$

Constraint Qualification - An Example

What if we instead tried to apply our tool to

$$
\begin{aligned}
& \max x^{1 / 2} y^{1 / 2} \\
& \text { s.t. }\left(p_{1} x+p_{2} y-m\right)^{3}=0
\end{aligned}
$$

This is the exact same problem. But now the FOCs are

$$
\begin{aligned}
& \frac{1}{2} x^{-1 / 2} y^{1 / 2}=3 \lambda p_{1}\left(p_{1} x+p_{2} y-m\right)^{2} \\
& \frac{1}{2} x^{1 / 2} y^{-1 / 2}=3 \lambda p_{2}\left(p_{1} x+p_{2} y-m\right)^{2}
\end{aligned}
$$

which simplify to

$$
\begin{aligned}
& \frac{1}{2} x^{-1 / 2} y^{1 / 2}=0 \\
& \frac{1}{2} x^{1 / 2} y^{-1 / 2}=0
\end{aligned}
$$

which is clearly not satisfied at the maximum.

Constraint Qualification

This example is a bit extreme, at every feasible point the constraint has 0 gradient.

- In practice, this is more manageable.
- To find candidate maxes we need to find
- All points where the Lagrange multiplier conditions hold
- All points where $\operatorname{Rank} \operatorname{Dg}\left(x^{*}\right) \neq m$.
- If a max exists, it's one of these points

Inequality Constraints

Conceptually, there's no reason to require our consumer to spend all their money. The consumer problem should be

$$
\begin{aligned}
& \max _{x \in \mathbb{R}_{+}^{n}} u(x) \\
& \text { s.t. } p \cdot x \leq m
\end{aligned}
$$

What can we do with this? It turns out, Lagrange multipliers still "work"

Non-negativity Constraints

Let's think about the simplest inequality constraints, constraints of the form

$$
x_{i} \geq 0
$$

Consider

$$
\begin{array}{r}
\max u(x) \\
\text { s.t. } x_{1} \geq 0
\end{array}
$$

Let x^{*} be a max. Either $x^{*} \gg 0$ and optimality implies $\nabla u(x)=0$ or $x_{1}^{*}=0$.

Non-negativity

Suppose $x_{1}^{*}=0, x_{i}^{*}>0$ for all $i \neq 1$. Then if I look at $x^{*}+d x$ it must be that

$$
u\left(x^{*}+d x\right)-u(x) \leq 0
$$

for any $d x$ small s.t. $d x_{1} \geq 0$. This means approximately

$$
\sum_{i=1}^{n} u_{i}\left(x^{*}\right) d x_{i} \leq 0
$$

which gives $u_{i}\left(x^{*}\right)=0$ for all $i \neq 1$ and

$$
u_{1}\left(x^{*}\right) \leq 0
$$

Non-negativity

So we have two cases. Either

$$
x_{1}^{*}=0 \text { and } u_{1}\left(x^{*}\right) \leq 0, u_{i}\left(x^{*}\right)=0 \forall i \neq 1
$$

or

$$
x_{1}^{*}>0 \text { and } \nabla u\left(x^{*}\right)=0 .
$$

We can formulate these conditions using Lagrange multipliers. It must be that

$$
\nabla u(x)=\lambda(-1,0,0, \ldots)
$$

and

$$
\lambda \geq 0
$$

and

$$
\lambda x_{1}=0
$$

at any maximum.

KKT Conditions

Back to the consumer problem. Let's add a new variable s (for "slack"), and instead solve

$$
\begin{aligned}
& \max _{x \in \mathbb{R}_{+}^{n}, s \in \mathbb{R}^{2}} u(x) \\
& \text { s.t. } p \cdot x+s=m \\
& s \geq 0
\end{aligned}
$$

Ignoring non-negativity of the x 's, this gives us Lagrange multiplier condition

$$
\nabla u(x)=\lambda p
$$

and the additional conditions

$$
\begin{aligned}
0 & =\lambda-\mu \\
\mu(-s) & =0 \\
\mu & \geq 0
\end{aligned}
$$

KKT Conditions

Now let's get rid of the auxiliary variables by noting:

$$
\lambda=\mu
$$

and

$$
s=m-p \cdot x
$$

We end up with the following conditions:

$$
\begin{aligned}
\nabla u(x) & =\lambda p \\
\lambda(m-p \cdot x) & =0 \\
\lambda & \geq 0
\end{aligned}
$$

KKT conditions

In general
Theorem (Karush-Kuhn-Tucker Conditions)
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, differentiable. Suppose x^{*} solves

$$
\max f(x) \text { s.t } g(x) \leq 0
$$

and rank $D g^{*}\left(x^{*}\right)=m^{*}$ where g^{*} is the vector of binding constraints and m^{*} is the number of binding constraints. Then there exists a $\lambda \in \mathbb{R}^{m}$ such that

$$
\begin{aligned}
D f\left(x^{*}\right) & =\lambda^{\prime} D g\left(x^{*}\right) \\
g\left(x^{*}\right)_{i} & \leq 0 \text { for all } i \in\{1,2, \ldots m\} \\
\lambda_{i} g\left(x^{*}\right)_{i} & =0 \text { for all } i \in\{1,2, \ldots m\} \\
\lambda_{i} & \geq 0 \text { for all } i \in\{1,2, \ldots m\}
\end{aligned}
$$

KKT Conditions

We have

$$
\begin{aligned}
D f\left(x^{*}\right) & =\lambda^{\prime} D g\left(x^{*}\right) \\
g\left(x^{*}\right)_{i} & \leq 0 \text { for all } i \in\{1,2, \ldots m\} \\
\lambda_{i} g\left(x^{*}\right)_{i} & =0 \text { for all } i \in\{1,2, \ldots m\} \\
\lambda_{i} & \geq 0 \text { for all } i \in\{1,2, \ldots m\}
\end{aligned}
$$

- The first three conditions we could have essentially reached mechanically from the equality constraint result.
- The fourth is new. It is a consequence of the inequality constraint.
- For minimization problems, the multipliers must be negative.

Example - KKT

$\max x y$
s.t. $x^{2}+y^{2} \leq 1$

Example - KKT

$$
\begin{aligned}
& \max x y z+z \\
& \text { s.t. } x^{2}+y^{2}+z \leq 6 \\
& x, y, z \geq 0
\end{aligned}
$$

Example - KKT

$$
\begin{aligned}
& \max _{x, y \in \mathbb{R}_{+}} x \\
& \text { s.t } y-(1-x)^{3} \leq 0
\end{aligned}
$$

Example - Envy

There are two consumers, each of whom are jealous of the others consumption, captured by utility function

$$
u_{i}\left(x_{i}, x_{j}\right)=x_{i}-K x_{j}^{2}
$$

and there are in total X units of consumption in the economy. A social planner solves

$$
\max _{x_{1}, x_{2} \in \mathbb{R}_{+}} u_{1}\left(x_{1}, x_{2}\right)+u_{2}\left(x_{2}, x_{1}\right) \text { s.t. } x_{1}+x_{2} \leq X
$$

As a function of K, what is the efficient allocation? Does the constraint bind?

Lagrangian

Let's think about the Lagrangian again

$$
L(\lambda)=\max _{x \in X} f(x)-\lambda g(x)
$$

Let $\left(x^{*}, \lambda^{*}\right)$ be a maximum and a corresponding multiplier that satisfies the KKT conditions. Then for any $\lambda \geq 0$

$$
\begin{aligned}
L(\lambda) & =\max _{x \in X} f(x)-\lambda g(x) \\
& \geq f\left(x^{*}\right)-\lambda g\left(x^{*}\right) \\
& \geq f\left(x^{*}\right)-\lambda^{*} g\left(x^{*}\right)=f\left(x^{*}\right)
\end{aligned}
$$

where the third line comes from complementary slackness.
Therefore

$$
\min _{\lambda \geq 0} L(\lambda) \geq f\left(x^{*}\right)
$$

This is called duality. It's reasonable to expect, but not obvious that this \geq is an $=$ for "nice" problems.

KKT Conditions

We're left with a few loose ends we'd like to tie up. The KKT conditions aren't quite necessary or sufficient.

- (Necessity) The KKT conditions don't hold at maxima where the derivative matrix of the binding constraints is not full rank.
- (Sufficiency) If $\lambda>0$, we know the point can't be a min. Is that enough to tell us it's a max?
It turns out that we can make economically meaningful assumptions that also ensure these conditions are both necessary and sufficient.

