ELEC-E8404 Design of Electrical Machines

1.80 T

Aim: to learn the basic principles and methods for designing electromagnetic devices.

Plan

Course plan		Feb	March								April		
		28	3	7	10	14	17	21	24	28	31	4	14
Lectures													
1	Basics, reluctance Network												
2	Transformer												
3	Slot Windings and resistive loss												
4	Design and Thermal Modeling												
5	Synchronous Machines												
Homeworks													
1	Magnetic Circuit												
2	3-phase winding												
3	Design of Induction Machine												
Transformer Design work													
1	Basic Design												
2	Destailed design, construction												
3	Testing												
4	Related values, equivalent circuit												
5	Report												

Schedule

Fek	28	Principles of Design, Reluctance Model						
	3	Relcutance model (contd.)	Homework 1 Introduction					
	7	Transformer						
	10	Transformer (contd.)	Submission : Homework 1					
	14	Groups start preparing for transformer design						
Irch	14	Three phase slot winding						
Ma	17	Three phase slot winding (contd.)	Homework 2 Introduction					
	21	Design and Thermal Modeling						
	24	Thermal Modeling (contd.)	Submission : Homework 2					
	28	Synchronous Machines						
	31	Synchronous Machine (contd.)	Homework 3 Introduction					
_	4							
Apri	14		Submission : Homework 3					
	1215	Submit Report						

Assessment

- Three assignments (contributes to 1/3rd of final grade)
- Trasformer design task and report (contributes to 2/3rd of final grade)

Course reading

- Lecture slides, course handouts
- "Design of Electrical Machines", Juha Pyrhonen, Tapani Jokinen, Valeria Hrabovcova.

Course Schedule

 On Friday, 31st of March, the lecture will start at 14:45.

Electromagnetic and thermal modelling

Maxwell's equations

$$\nabla \cdot \mathbf{D} = \rho$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Material equations

$$D = \varepsilon E$$
$$J = \sigma E$$
$$B = \mu H$$

Heat transfer

$$\rho c_p \frac{\partial T}{\partial t} - \nabla \cdot (\lambda \nabla T) = p_h \qquad q = -\lambda \nabla T$$

In addition, boundary conditions have to be specified.

Electrical losses of a prototype ...

and thermal field

1.46E+02

Raw Materials

- Conductors
 - Copper, aluminium, brass
 - Insulation layers

- Insulators
 - Foils, tapes, bars
 - Supports and frames
 - Castable compounds

Form-wound coils in a low-voltage machine

Raw Materials II

- Electrical steel sheets
 - Standard dimensions
 - Ready-made, punched sheets available
 - Insulation coating
 - Magnetic characteristics
 - Oriented steel sheets
 - Non-oriented steel sheets

Magnetic characteristics of iron

Alternating field

Fields in an electrical machine

Raw Materials III

Tools for the design process

- Computer
- Design codes developed by experts
 - A coupled electromagnetic, thermal and mechanical problem has to be solved
 - Typically, semi-analytical models for routine design, FEA for designing new products
- Test results from previous products
 - Provide verification and possible correction factors between the theoretical models and real world

$$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = \sum_{i} \boldsymbol{\Phi}_{i} = 0$$

$$\boldsymbol{\Phi}_{i} = \int_{S_{i}} \boldsymbol{B} \cdot d\boldsymbol{S}$$

Analogy between electric and magnetic circuits

Reluctance

Flux flows in the stator yoke.

• Rotating magnetic field is produced.

- The interaction between these two rotating fields produces torque.
- AFPMSM principle of operation is similar to RFPMSM.

Flux distribution on d-axis II

Thermal resistance

A conductor having a constant cross-sectional area

Equations for the heat flow and electric current ($p_h = 0$)

$$P = \int_{A} \vec{q} \cdot d\vec{A} = \int_{A} -\lambda \nabla T \cdot d\vec{A} = \lambda \frac{\theta}{l} A = \frac{\theta}{R} \qquad \qquad R = \frac{l}{\lambda A}$$

$$I = \int_{A} \vec{J} \cdot d\vec{A} = \int_{A} -\sigma \nabla \phi \cdot d\vec{A} = \sigma \frac{U}{l} A = \frac{U}{R_{e}}$$

$$R_{\rm e} = \frac{l}{\sigma A}$$

1D thermal network

$$\nabla \cdot (\lambda \nabla T) = -p_h$$
 $\lambda = \text{constant}; p_h = \text{constant}$

$$\frac{d^{2}T}{dx^{2}} = -\frac{p_{h}}{\lambda} \implies T(x) = -\frac{p_{h}}{2\lambda}x^{2} + c_{1}x + c_{2}$$

$$\begin{cases} T(0) = T_1 \\ T(l) = T_2 \end{cases} \Rightarrow T(x) = \frac{p_h}{2\lambda} x(l-x) + \frac{l-x}{l} T_1 + \frac{x}{l} T_2 \end{cases}$$

Average temperature of a conductor

Knowledge of the average temperature is often sufficient

$$T_{\text{ave}} = \frac{1}{l} \int_{0}^{l} \left[\frac{p_{\text{h}}}{2\lambda} x(l-x) + \frac{l-x}{l} T_{1} + \frac{x}{l} T_{2} \right] dx = \frac{p_{\text{h}}}{12\lambda} l^{2} + \frac{1}{2} (T_{1} + T_{2})$$

Task: Define a simple thermal network, which models correctly the heat transfer and gives as a nodal value the average temperature of the conductor.

Thermal network for 1D heat flow

The thermal network below fulfils the requirements

