
Design of a large transformer

Large transformers are typically designed according to the 
specifications and needs of the end user (customer). The 
specifications needed are

• Rated power (SN)
• Rated voltages (UN1, UN2)
• Rated frequency (fN)
• Relative short-circuit impedance (zk)
• Connection of the windings
• Transformer standard followed and
• Service type and cooling method.



• Cost of the core material including the costs of raw material 
and manufacturing hfe,

• Cost of the winding material including the costs of raw 
material and manufacturing hcu,

• Capitalisation factor for no-load losses (K0),
• Capitalisation factor for load losses (Kk),
• Capitalisation factor for the production costs (Km). If the 

transformer has no re-circulation value, Km is one.
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Economical aspects require knowledge of
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• Flux density of the limb;
initial value:

• Current density in the primary winding;
initial value: J1 = 2.2 ... 3.8 A/mm2

• Current density in the secondary winding;
initial value: J2 = 2.0 ... 2.8 A/mm2

• Cross-sectional area of a limb from an empirical 
equation; initial value:

Design of a large transformer

1. The free variables (design parameters) must be chosen. 
Four variables are needed to define the basic design of a 
transformer, and typically, the following ones are chosen
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2. Cross-sectional areas needed for the conductors of the 
primary and secondary windings

3. Numbers of turns



4. Cross-sectional area needed for the windings

5. The height and width of the cross-sectional winding area 
affect the short-circuit impedance of the transformer. They 
are fixed so that the specified impedance is obtained.

6. The cross-section of the yoke and lengths of the limb and 
yoke are defined.

7. Weight of the core and conductor materials, and further, 
the material and production costs are calculated
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8. The core and copper losses of the transformer as well as 
the capitalisation cost are calculated 

9. The cost H is a function of the four free variables

The minimum of this function is searched while keeping the 
constraints of step 1 in mind. Also, the temperature should 
stay within the temperature class of the windings.

Design of a large transformer

= + +m m 0 cufe kH K H K P K P

( )= 1 2limb fe,limb
ˆ , , ,H H b A J J



The flux density of the 
yoke is obtained from the 
flux density of the limb 
and their known cross-
sections 

The magnetic field 
strengths in the limb and 
yoke are obtained from 
the magnetisation curve 
of the core material

Magnetisation current
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The magnetisation curve 
of the core material can 
also be presented in the 
form

In this case, the peak 
value of flux density is 
obtained directly as a 
function of the effective 
field strength.

Magnetisation current
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The total magnetomotive force in a three-phase transformer 
is

The magnetomotive force over a contact is obtained from 
equation

Magnetisation current
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llimb is the magnetic length of a limb,
lyoke is the magnetic length of a yoke and
Vmδ is the magnetomotive force needed to drive the flux

over the sheet-sheet contacts of one limb.
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The magnetisation current is

Magnetisation current
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No-load current and losses
The no-load losses are composed of two components, i.e. 
resistive losses of the primary winding and the core losses. 
For a three-phase transformer

where Rcu1 is the phase resistance of primary winding. The 
ratio of the no-load current and rated current strongly 
depends on the size of the transformer
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The producers of electrical steels give the loss coefficient pfe0
for their electrical steel sheets. These are typically given per 
mass unit (kg) at specified peak flux densities (1.0 or 1.5 T) 
and frequencies.



No-load losses

Losses per unit mass for an electrical 
steel sheet as a function of the peak 
flux density. Frequency is constant.

Dependence of the losses and peak 
flux density on the angle α from the 
direction of the rolling direction. The 
field strength H is kept constant.



No-load losses
The leftmost figure on the previous slide implies that  the 
losses can be expressed as a polynomial or exponent 
function on the peak value of flux density

The exponent β0 is about 2.0 for non-oriented steel sheets. 
For oriented sheets, the exponent varies more. Close to the 
peak value 1.5 T, the exponent is about 2.8.

The core losses of a transformer are

where pfe,L are the additional losses of the sheets.
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No-load losses
The additional losses are produced because

• The direction of the flux differs from the rolling direction, 
for instance, at the contact region of a limb and yoke,

• The flux is somewhat unevenly distributed in the core, 
i.e. slightly larger close to the winding window,

• Punching and mechanical treatment of the sheets 
causes degradation in the characteristics of the sheet. 
A heat treatment after machining improves the 
characteristics to some extent. 



Leakage reactance is needed 
for the equivalent circuit of a 
transformer. It can be 
obtained from the energy of 
the leakage flux

µ0 is the permeability of the 
volume element (conductor 
or air). HV is magnetic field 
strength in the volume 
element.
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Distribution of the magnetomotive 
force driving the leakage flux

Leakage reactance of a concentric winding
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Relation between the mmf and field strength

where lm is an effective length of a flux line and λx is a 
correction factor.
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Integration over the winding window

Leakage reactance of a concentric winding

Energy from the inductance and current
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Leakage reactance of a concentric winding
Correction factor according to Rogowski

where

These equations are valid when
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