

Task

Basic design Dimensioning

Thermal analysis

Electromagnetic analysis

Task

Design a 40 kW four-pole PM motor and estimate the parameters needed for the torque versus load angle equation

$$
T_{e}=-\frac{3}{2} \frac{p}{\omega}\left[\frac{\hat{u}_{s} \hat{u}_{p}}{X_{d}} \sin \delta+\frac{\hat{u}_{s}^{2}}{2}\left(\frac{1}{X_{q}}-\frac{1}{X_{d}}\right) \sin 2 \delta\right]
$$

The motor will be connected to a balanced 50 Hz three-phase supply with a 400 V line-to-line voltage

$$
\Rightarrow \hat{u}_{s}=327 \mathrm{~V}
$$

Simplifications

The stator is taken from a 37 kW cage induction machine.
The winding may have to be redesigned.
The rotor is of the embedded V-shape design.

Basic geometry

- Stator from an existing cage induction motor
- New permanent magnet rotor with V -shaped magnets for flux concentration

Original induction motor

Main dimensions of the stator

	$[\mathrm{mm}]$
Length l	246
$D_{\mathrm{s} 1}$	310
$D_{\mathrm{s} 2}$	200
$b_{\mathrm{s} 1}$	3.5
$b_{\mathrm{s} 2}$	6.5
$b_{\mathrm{s} 3}$	8.8
h_{s}	23.9
$h_{\mathrm{s} 1}$	1.0
$h_{\mathrm{s} 3}$	17.5

Main dimensions of the rotor

Space-vector diagram for a PM synchronous machine

$$
\begin{gathered}
\left\{\begin{array}{l}
u_{d}=R_{s} i_{d}-\omega \psi_{q} \\
u_{q}=R_{s} i_{q}+\omega \psi_{d}
\end{array}\right. \\
\left\{\begin{array}{l}
\psi_{d}=L_{d} i_{d}+\psi_{\mathrm{pm}} \\
\psi_{q}=L_{q} i_{q}
\end{array}\right. \\
\underline{u}_{s}^{r}=R_{s} \underline{i}_{s}^{r}+\mathrm{j} \omega L_{d} i_{d}-\omega L_{q} i_{q}+\underline{u}_{p}
\end{gathered}
$$

$$
\begin{aligned}
& \underline{u}_{p}=\mathrm{j} \hat{u}_{p}=\mathrm{j} \omega \psi_{\mathrm{pm}} \\
& \left\{\begin{array}{l}
i_{d}=\hat{i}_{s} \sin (\delta+\varphi) \\
i_{q}=\hat{i}_{s} \cos (\delta+\varphi)
\end{array}\right.
\end{aligned}
$$

Parameters of the PM machine

The voltage of the stator winding presented as a space vector is

$$
\underline{u}_{s}^{r}=R_{s} \underline{i}_{s}^{r}+\mathrm{j} \omega L_{d} i_{d}-\omega L_{q} i_{q}+\underline{u}_{p} ; \quad \underline{u}_{p}=\mathrm{j} \hat{u}_{p}=\mathrm{j} \omega \psi_{\mathrm{pm}}
$$

When deriving the expression for the torque, the stator resistance was neglected and stator reactances were used instead of the inductances

$$
\underline{u}_{s}^{r} \approx \mathrm{j} X_{d} i_{d}-X_{q} i_{q}+\underline{u}_{p} ; \quad \underline{u}_{p}=\mathrm{j} \hat{u}_{p}=\mathrm{j} \omega \psi_{\mathrm{pm}}
$$

To get the machine parameters $u_{\mathrm{p}}, X_{\mathrm{d}}, X_{\mathrm{q}}$, we shall calculate one by one the voltages induced by the flux of the permanent magnets (u_{p}), by the flux of a current on d-axis ($u=X_{\mathrm{d}} i_{\mathrm{d}}$) and by the flux of a current on q-axis ($u=X_{\mathrm{q}} i_{\mathrm{q}}$).

Reluctance network for the magnetic circuit

Reluctance network for the magnetic circuit; no-load => $I_{\text {st }}=0$

Magnetomotive force equation

Passive materials

$$
B_{i}=\mu_{i} H_{i} \Rightarrow H_{i} d_{i}=\frac{d_{i}}{\mu_{i}} B_{i}=\frac{d_{i}}{\mu_{i} A_{i}} \Psi_{i}
$$

Permanent $\quad B_{\mathrm{pm}}=B_{\mathrm{r}}+\mu_{\mathrm{pm}} H_{\mathrm{pm}}$ magnet

$$
\Rightarrow H_{\mathrm{pm}} d_{\mathrm{pm}}=\frac{d_{\mathrm{pm}}}{\mu_{\mathrm{pm}}}\left(B_{\mathrm{pm}}-B_{\mathrm{r}}\right)=\frac{d_{\mathrm{pm}} \Psi_{\mathrm{pm}}}{\mu_{\mathrm{pm}} A_{\mathrm{pm}}}-\frac{d_{\mathrm{pm}} B_{\mathrm{r}}}{\mu_{\mathrm{pm}}}
$$

mmv equation

$$
\sum_{i=1}^{n} H_{i} d_{i}=\sum_{i=1}^{n} \frac{d_{i}}{\mu_{i} A_{i}} \Psi_{i}-\frac{B_{\mathrm{r}} d_{\mathrm{pm}}}{\mu_{\mathrm{pm}}}=0
$$

Reluctance network for the magnetic circuit II

Flux equation with the reluctance coefficients

$$
\sum_{i=1}^{n} \frac{d_{i}}{\mu_{i} A_{i}} \Psi_{i}=\sum_{i=1}^{n} R_{i} \Psi_{i}=\frac{B_{\mathrm{r}} d_{\mathrm{pm}}}{\mu_{\mathrm{pm}}}
$$

Conservation of flux

$$
\sum_{i=1}^{k} \Psi_{i}=0
$$

Flux equations for the PM motor

$$
\left\{\begin{array}{l}
R_{\mathrm{pm}} \Psi_{\mathrm{pm}}+R_{\mathrm{ps}} \Psi_{\mathrm{ps}}+R_{\mathrm{rb}} \Psi_{\mathrm{rb}}=\frac{B_{\mathrm{r}} d_{\mathrm{pm}}}{\mu_{\mathrm{pm}}} \\
R_{\mathrm{ag}} \Psi_{\mathrm{ag}}+R_{\mathrm{st}} \Psi_{\mathrm{st}}+R_{\mathrm{sy}} \Psi_{\mathrm{sy}}-R_{\mathrm{rb}} \Psi_{\mathrm{rb}}=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\Psi_{\mathrm{pm}}=\Psi_{\mathrm{ps}} \\
\Psi_{\mathrm{ag}}=\Psi_{\mathrm{st}}=\Psi_{\mathrm{sy}} \\
\Psi_{\mathrm{rb}}=\Psi_{\mathrm{pm}}-\Psi_{\mathrm{ag}}
\end{array}\right.
$$

Application to the PM motor geometry

$$
\begin{aligned}
& \left\{\begin{array}{l}
R_{\mathrm{pm}} \Psi_{\mathrm{pm}}+R_{\mathrm{ps}} \Psi_{\mathrm{ps}}+R_{\mathrm{rb}} \Psi_{\mathrm{rb}}=\frac{B_{\mathrm{r}} d_{\mathrm{pm}}}{\mu_{\mathrm{pm}}} \\
R_{\mathrm{ag}} \Psi_{\mathrm{ag}}+R_{\mathrm{st}} \Psi_{\mathrm{st}}+R_{\mathrm{sy}} \Psi_{\mathrm{sy}}-R_{\mathrm{rb}} \Psi_{\mathrm{rb}}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
\left(R_{\mathrm{pm}}+R_{\mathrm{ps}}+R_{\mathrm{rb}}\right) \Psi_{\mathrm{pm}}-R_{\mathrm{rb}} \Psi_{\mathrm{ag}}=\frac{B_{\mathrm{r}} d_{\mathrm{pm}}}{\mu_{\mathrm{pm}}} \\
R_{\mathrm{rb}} \Psi_{\mathrm{pm}}-\left(R_{\mathrm{ag}}+R_{\mathrm{st}}+R_{\mathrm{sy}}+R_{\mathrm{rb}}\right) \Psi_{\mathrm{ag}}=0 \\
\Psi_{\mathrm{pm}}=\Psi_{\mathrm{ps}} \\
\Psi_{\mathrm{rb}}=\Psi_{\mathrm{st}}=\Psi_{\mathrm{pm}}-\Psi_{\mathrm{ag}}
\end{array}\right. \\
& \left\{\begin{array}{l}
\left(R_{\mathrm{ag}}+R_{\mathrm{st}}+R_{\mathrm{sy}}+R_{\mathrm{rb}}\right) \\
\Psi_{\mathrm{pm}}=\frac{R_{\mathrm{rb}}}{\left[\left(R_{\mathrm{ag}}+R_{\mathrm{st}}+R_{\mathrm{sy}}+R_{\mathrm{rb}}\right)\left(R_{\mathrm{pm}}+R_{\mathrm{ps}}+R_{\mathrm{rb}}\right)-R_{\mathrm{rb}} R_{\mathrm{rb}}\right]} \frac{B_{\mathrm{r}} d_{\mathrm{pm}}}{\mu_{\mathrm{pm}}} \\
\Psi_{\mathrm{ag}}=\frac{\Psi_{\mathrm{p}}}{\left[\left(R_{\mathrm{ag}}+R_{\mathrm{st}}+R_{\mathrm{sy}}+R_{\mathrm{rb}}\right)\left(R_{\mathrm{pm}}+R_{\mathrm{ps}}+R_{\mathrm{rb}}\right)-R_{\mathrm{rb}} R_{\mathrm{rb}}\right]} \frac{B_{\mathrm{r}} d_{\mathrm{pm}}}{\mu_{\mathrm{pm}}}
\end{array}\right.
\end{aligned}
$$

Reluctance of the air gap

Because of the stator slotting, the air gap represents a slightly larger reluctance for the flux than a smooth air gap would represent. In a conventional analysis, this is taken into account by multiplying the physical air-gap length by a Carter's factor.

Carter's factor is defined as the ratio of the maximum and average flux densities

$$
k_{\mathrm{C}}=\frac{B_{\max }}{B_{\mathrm{ave}}}
$$

over a slot pitch. It depends on the ratio of the slot opening and air-gap length

$$
k_{\mathrm{C}}=\frac{\tau_{\mathrm{s}}}{\tau_{\mathrm{s}}-\gamma b_{\mathrm{s} 1}} ; \quad \gamma \approx \frac{1}{1+5 \frac{\delta}{b_{\mathrm{s} 1}}}
$$

Saturation of the iron bridge

It is essential to model the saturation of the iron bridge. Without saturation, the main flux would flow through the bridge without crossing the air gap.

The figure shows the flux if a constant relative permeability of 1000 is assumed for all the iron parts.

In this case, the no-load voltage of the original stator winding is 63 V , only, when it should be about 400 V .

Magnetisation curve for the core material

Calculation result

Br	1.1		B est	μ	d	A	R
$\mu 0$	$1.26 \mathrm{E}-06$	PM	0.80	1.37E-06	0.0100	0.01624	449659
Length I	0.2460	pole shoe	1.00	$1.26 \mathrm{E}-03$	0.0233	0.01148	1617
Ds1	0.3100	air gap	0.80	$1.26 \mathrm{E}-06$	0.0032	0.01392	180641
Ds2	0.2000						
bs1	0.0035	stator teeth	1.50	$1.26 \mathrm{E}-03$	0.0239	0.00758	2508
bs2	0.0065						
bs3	0.0088	stator yoke	1.50	$1.26 \mathrm{E}-03$	0.0548	0.00765	5696
hs	0.0239						
hs1	0.0010	rotor bridge	2.10	$1.16 \mathrm{E}-05$	0.0120	0.00074	1395836
hs3	0.0175						
Dr1	0.1940						
Dr2	0.0500						
br1	0.1000	Yag	0.0115		Bag	0.705	
br2	0.0660						
hm	0.0100	$\boldsymbol{\Psi p m}$	0.0130		Bpm	0.801	
hr2	0.0030						
rp	0.0980	$\Psi \mathrm{rb}$	0.0015		Brb	2.100	
Y	0.189						
T	0.013						
kC	1.053						

Radial flux density in the air gap

Harmonic	Amplitude
1	0.9340
3	0.1368
5	0.0757
7	0.1234
9	0.0852
11	0.0196
13	0.0279
15	0.0393
17	0.0236
19	0.0000
21	0.0191
23	0.0518
25	0.0435
27	0.0128

Flux density at no load

Excitation voltage u_{pm}

We obtained from the reluctance network that the flux-density in the air gap under the pole shoe was $B_{\mathrm{ag}}=0.705 \mathrm{~T}$. The width of the pole shoe is approximately 130 electrical degrees. These values give for the fundamental component of the airgap flux density

Excitation voltage u_{pm} II

The original stator winding has two pole pairs ($p=2$), four slots per phase and pole ($q=4$), twelve turns in each slot ($N_{\mathrm{s}}=12$), and let us first assume that all the turns are connected in series.
Constructing the slot-star, we obtain for the winding factor k and induced phase voltage U_{ph} (rms value)

$$
\begin{aligned}
& k=\frac{1}{4}\left|1+\mathrm{e}^{\mathrm{j} \Pi / 12}+\mathrm{e}^{\mathrm{j} \Pi 2 / 12}+\mathrm{e}^{\mathrm{j} \Pi 3 / 12}\right| \approx 0.958 \\
& U_{\mathrm{ph}}=p\left(2 q N_{\mathrm{s}}\right) k\left(\frac{\omega}{p} \frac{D_{\mathrm{st} 1}}{2} l B\right)
\end{aligned}
$$

Excitation voltage u_{pm} III

An rms value of phase voltage 409 V would be quite alright if the machine were DELTA connected and supplied from a 400 V voltage source. However, there is a large third harmonic component in the air-gap flux that would induce circulating currents in a delta connected winding. It is probably better to choose the star connection.

The stator of the original induction motor is STAR connected but the two pole pairs are connected in parallel. The machine has two parallel paths ($a=2$). If we make the same connection, the no-load phase voltage would be about 205 V and the no-load line-to-line voltage 354 V . The machine would have a power factor somewhat smaller than one and inductive.

The no-load voltage could be easily increased by increasing the number of turns. However, the finite element analysis gave a somewhat larger air-gap flux density than the reluctance network. Let us choose the original winding

Connection
Number of turns per slot
Number of parallel paths

STAR

$$
\begin{aligned}
N_{\mathrm{s}} & =12 \\
a & =2
\end{aligned}
$$

The excitation voltage (peak value of phase voltage) becomes

