
Parameters of the PM machine

Assuming sinusoidal flux distribution and sinusoidal time
variation, an analytical expression can be derived for the
torque of the machine

It includes three machine parameters up, Xd, Xq
three other parameters us, ϖ, χ, which are related to the supply
voltage and loading.
As we are used to calculating the voltages of a winding from
the harmonic components of the air-gap flux, we shall,
1. calculate the voltages
2. and then extract the reactances from the voltages.
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Calculating machine parameters

To find machine parameters up, Xd, Xq, we shall calculate

1. voltages induced by the flux of the permanent magnets (up)

2. Voltages induced by the flux of a current on d-axis

3. Voltages induced by the flux of a current on q-axis

1. Calculate voltages induced by PM (up)

This assumption is ok, since the magnets generate a main part of the flux.
Find      , and flux densities in pole shoe, stator yoke and tooth.

2,3. Calculate voltages
we freeze the permeabilities of material  based on the no-load PM flux
solved previously.
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Reminder.. Calculate voltages induced by PM - 1

<st 0I

∋ (
∋ (∋ (

∋ (∋ (

Ξ
λ

Ξ
λ

 ∗ ∗ ∗
 <

  ∗ ∗ ∗ ∗ ∗ , 


 <
  ∗ ∗ ∗ ∗ ∗ , 

ag st sy rb pm
pm

pmag st sy rb pm ps rb rb rb

pmrb
ag

pmag st sy rb pm ps rb rb rb

r

r

R R R R d

R R R R R R R R R

dR
R R R R R R

B

R R R

B

No load,

Ξ Ξ

Ξ Ξ Ξ

Ξ Ξ Ξ

 <
 < <
 < ,

pm ps

ag st sy

pm agrb



Reminder.. Calculate voltages induced by PM - 2

No load, with PM flux,
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Excitation voltage upm
This rms value of phase voltage 409 V would be quite alright if the machine
was DELTA connected and supplied from a 400 V voltage source.
However, there is a large 3rd harmonic component in the air-gap flux that
would induce circulating currents in a delta connected winding. It is
probably better to choose the star connection.

The stator of the original induction motor is STAR connected but the two
pole pairs are connected in parallel. So, the machine has two parallel paths
(a = 2). In parallel connection, the phase voltage is half of that calculated in
series. So for STAR connected stator with a = 2, no-load phase voltage =
409/2= 205 V and the no-load line-to-line voltage 354 V. The machine
would have a power factor somewhat smaller than one and inductive.

It is possible to easily increase the no-load voltage by increasing the
number of turns. However, with this, the finite element analysis gave a
somewhat larger air-gap flux density than the reluctance network. Let us
stick with the original winding

Connection STAR
Number of turns per slot Ns = 12
Number of parallel paths a = 2
The excitation voltage (peak value of phase voltage) < √ <pmˆ 205 2 290 Vu



Calculate d-and q-axes voltages:
Reactances on the d- and q-axes

Stator current on d-axis Stator current on q-axis

In FEM, when the flux components below were computed for the d- and
q-axis, the permeability was freezed based on the no-load flux density
and the remanence Br of the magnets was set to zero.
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Flux on d-axis
The reluctance network shown is used to solve the relation between
the flux and current on the d-axis. Here, we assume loaded
condition.  Flux is produced by a stator current which is distributed in
the slots and the MMF over the air gap varies from tooth to tooth.

The permeability should be
frozen based on the common
flux produced by the stator
and rotor.

In this machine, there is rotor
and stator excitation.

As the magnets generate a
main part of the flux, we
freeze the permeability based
on the no-load PM flux solved
previously.



Flux on d-axis II
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Using the slot indices of the
figure, the magnetomotive
forces produced by the slots
1 – 6 are Nsi, Nsi, Nsi, Nsi, 0, 0,
where Ns is the number of
turns in a slot.
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The order of the phases in the stator slots from the right
bottom to the left upper corner is a, –c, b. Four slots belong to
a same phase. A balanced three-phase current without zero-
component is assumed. In this rotor position, to direct the flux
along the d-axis, the phase currents should be



Flux on d-axis
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Loop equations around slots 1, 3, 4, 5 and 6



Flux on d-axis III

Reluctance of the rotor <
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MMF equation through tooth 4 to the rotor,
and flux equation
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Flux on d-axis IV

Combining the last two equations gives
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Coefficients for the tooth and rotor fluxes (in units T/A)
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As we know how to calculate the voltage induced in a phase
winding by a fundamental field of the air gap, we shall
calculate the flux linkage from this voltage. The fundamental
air-gap flux density must be integrated numerically from the
tooth fluxes, for instance, by using the trapezoidal rule. In the
spatial polar coordinates,

where kn is 0,5 for the first and last tooth, and 1 otherwise. The
numerical values are presented on the worksheet on the next
slide. The fundamental air-gap flux density is

Flux on d-axis V
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Flux on d-axis VI
Integration of the fundamental harmonic

Br 1.1 B est μ d A R
μ0 1.26E-06 PM 0.80 1.37E-06 0.0100 0.01624 449659

Length l 0.2460 air gap 0.80 1.26E-06 0.0032 0.00317 792765

Ds1 0.3100 rotor bridge 2.10 1.16E-05 0.0120 0.00074 1395836
Ds2 0.2000
bs1 0.0035 Rotor 340099
bs2 0.0065
bs3 0.0088 air-gap 2 1.26E-06 0.0052 0.00317 1304615
hs 0.0239
hs1 0.0010
hs3 0.0175 Ψ0 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

Dr1 0.1940 0.00E+00 7.67E-07 -2.47E-07 1.01E-06 2.28E-06 2.28E-06 2.28E-06
Dr2 0.0500
br1 0.1000 Ψpm Ψrb
br2 0.0660
hm 0.0100 5.74E-06 1.85E-06
hr2 0.0030
rp 0.0980 Integration

0 1 2 3 4 5 6
γ 0.189 0.00E+00 6.16E-05 -3.84E-05 2.23E-04 6.12E-04 6.83E-04 7.07E-04
τ 0.013 B = 6.31E-04
kC 1.053

Analytical



Flux on d-axis VII
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Flux on q-axis
For a balanced system, to focus the flux on the q-axis, the
phase currents should be
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Flux on q-axis II
The tooth fluxes from the middle to the right are

The fundamental air-gap flux density must be integrated
numerically from the tooth fluxes, for instance, using the
trapezoidal rule. In the spatial polar coordinates

where kn is 0.5 for the first and last tooth, and 1 otherwise. The
fundamental flux density is
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Flux on q-axis III
Integration of the fundamental harmonic

Br 1.1 B est μ d A R
μ0 1.26E-06 PM 0.80 1.26E-06 0.0100 0.01624 490129

Length l 0.2460 air gap 0.80 1.26E-06 0.0032 0.00317 792765

Ds1 0.3100 rotor bridge 2.10 1.16E-05 0.0120 0.00074 1395836
Ds2 0.2000
bs1 0.0035 Rotor 362753
bs2 0.0065
bs3 0.0088 air-gap 2 1.26E-06 0.0052 0.00317 1304615
hs 0.0239
hs1 0.0010
hs3 0.0175 Ψ0 Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

Dr1 0.1940 3.07E-06 2.68E-06 3.78E-06 3.15E-06 2.52E-06 1.26E-06 0.00E+00
Dr2 0.0500
br1 0.1000 Integration
br2 0.0660 0 1 2 3 4 5 6
hm 0.0100 9.52E-04 8.05E-04 1.02E-03 6.92E-04 3.92E-04 1.01E-04 0.00E+00
hr2 0.0030 B = 1.16E-03
rp 0.0980

γ 0.189
τ 0.013
kC 1.053



Flux on q-axis IV
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Stator reactances of the d- and q-axis
To produce the flux on the d-axis, we used currents

or as a
space vector

For the q-axis, the currents were

Thus, we used a somewhat larger space-vector current on the
d-axis than on the q-axis. This has to be kept in mind.
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Reactances of the d and q-axis II
We have already derived equation

which gives the relation between the peak values of the air-
gap flux density and stator phase voltage. The peak value of a
phase voltage is also the amplitude of voltage space vector.

Substituting the equations of the flux densities for the d- and
q-axes gives
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Reactances of the d and q-axis III
However, the equation of phase voltage was derived for a
series connected winding and we already decided to use two
parallel paths, i.e. to connect the two pole pairs of the machine
in parallel. In this case, the current in the terminals of the
machine will be twice as large as the current of a series
connected winding and the voltage only half of the series
connected winding. This means that the reactances have to be
divided by four. We finally obtain

The FEM model gives

Torque equation
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Armature reaction
In a loaded machine
(with stator winding
flux and PM flux), the
d-axis component of
the stator current
reduces the air-gap
flux somewhat. The
current on q-axis
decreases the flux on
one side of a pole but
increases it on the
other side (see the
figure on right).

This effect is called
armature reaction.
It affects the machine
characteristics  by
saturating the iron
core (see the teeth
facing the left side of
the pole). Magnetic field of a motor loaded by the rated torque.


