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I. FERMI-DIRAC DISTRIBUTION
Assume the single-particle state € is a grand canonical ensemble. For this the grand partition function based on
Pauli exclusion principle reads
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where 8 = 1/(kgT) and pu is the chemical potential of the system. The grand partition function here is Z = e=#?®,
where @ is called the grand potential of the system. In general, the grand potential of a system is given by

® = (E) =TS - p(N), (2)
where (N) is the average occupation in the state e,
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Here we identify the population (N) with the distribution
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i.e. the Fermi-Dirac distribution function.

II. BOSE-EINSTEIN DISTRIBUTION

With the same procedure as in the previous subsection, we again consider a single-particle state as a grand canonical
system. Unlike in the previous case, here for bosons multiple oocupations are allowed whereby the partition function
reads
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where we summed the geometric series in the second step. Then as before we find the average occupation (N) =
ﬁ%% = m, and we again identify the population (N) with the distribution

i.e. the Bose-Einstein distribution function.



