
Analysis, Random Walks and Groups

Exercise sheet 4

Homework exercises: Return these for marking to Kai Hippi in the tutorial on Week
5. Contact Kai by email if you cannot return these in-person, and you can arrange an
alternative way to return your solutions. Remember to be clear in your solutions, if the
solution is unclear and difficult to read, you can lose marks. Also, if you do not know how
to solve the exercise, attempt something, you can get awarded partial marks.

Kai’s comments etc. are in red color.

1. (5pts)

(a) Define the subgroup Γ := {0, 2} ⊂ Z4. Let µ be any probability distribution on Z4 with
support spt(µ) = Γ. Define the uniform measure on Γ by

νΓ =
1

2
δ0 +

1

2
δ2.

Prove the following version of the Upper Bound Lemma:

d(µ∗n, νΓ) ≤ 1

2

√ ∑
k∈Z4\Γ

|µ̂(k)|2n

Hint: the proof of the regular upper bound lemma can help

Solution 1.a

By the L1 identity

4d(µ∗n, νΓ)2 =
( p−1∑
t=0

|µ∗n(t)− νΓ(t)|
)2
.

Since λ(t) = 1/p for all t ∈ Zp, we have( p−1∑
t=0

|µ∗n(t)− νΓ(t)|
)2

= p2
( p−1∑
t=0

λ(t)|µ∗n(t)− νΓ(t)|
)2
.

Using the definition of the inner product for the functions

f(t) := λ(t), and g(t) := |µ∗n(t)− νΓ(t)|, t ∈ Zp,

and Cauchy-Schwartz Inequality we obtain( p−1∑
t=0

λ(t)|µ∗n(t)− νΓ(t)|
)2

= |〈f, g〉|2 ≤ ‖f‖22‖g‖22.

The L2 norms here are

‖f‖22 =
∑
t∈Zp

λ(t)2 =
∑
t∈Zp

p−2 = p−1

1



2

and by definition of g:

‖g‖22 =
∑
t∈Zp

|µ∗n(t)− νΓ(t)|2.

Hence we have proved

4d(µ∗n, λ)2 ≤ p
∑
t∈Zp

|µ∗n(t)− νΓ(t)|2 = p‖µ∗n − νΓ‖22

By Plancherel’s Theorem, we have that

p‖µ∗n − νΓ‖22 = ‖ ̂µ∗n − νΓ‖22 = ‖µ̂∗n − ν̂Γ‖22 =

p−1∑
k=0

|µ̂∗n(k)− ν̂Γ(k)|2.

Computing Fourier transform of νΓ we see that

ν̂Γ(k) =
1

2
(1 + e−πik) =

{
1, k ∈ Γ;

0, k /∈ Γ.

On the other hand, by the Convolution Theorem we have

µ̂∗n(k) = µ̂(k)n.

As sptµ = {0, 2} we know that there exists 0 < α < 1 such that µ = αδ0 + (1− α)δ2.
Thus

µ̂(k) = α+ (1− α)e−πik.

Thus
µ̂(0) = 1 and µ̂(2) = 1.

Hence the difference

µ̂∗n(k)− ν̂Γ(k) =

{
0, k ∈ Γ;

µ̂∗n(k), k /∈ Γ.

This gives
p−1∑
k=0

|µ̂∗n(k)− ν̂Γ(k)|2 =
∑

k∈Zp\Γ

|µ̂(k)|2n.

Dividing by 4 and taking square roots from both sides gives the claim.

(b) In the previous part (a), after how many convolutions is the total variation distance

d(µ∗n, νΓ) <
1

100
?

Solution 1.b

We have that µ = αδ0 + (1 − α)δ2 for some 0 < α < 1 since sptµ = Γ = {0, 2}.
Hence

µ̂(k) = α+ (1− α)e−πik

Thus
µ̂(1) = µ̂(3) = 2α− 1

so by the previous exercise

d(µ∗n, νΓ) ≤ 1

2

√ ∑
k∈Z4\Γ

|µ̂(k)|2n ≤ 1

2

√
2|2α− 1|2n =

√
2

2
|2α− 1|n.
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Thus after taking logarithms we know that (when α 6= 1/2) that
√

2

2
|2α− 1|n < 1

100

if and only if

n >
log(1/(50

√
2))

log |2α− 1|
so if α 6= 1/2 and

n ≥

⌈
log(1/(50

√
2))

log |2α− 1|

⌉
then

d(µ∗n, νΓ) <
1

100
.

When α = 1/2, then µ = νΓ, so as Γ is a subgroup we have for all n ∈ N that

µ∗n = ν∗nΓ = νΓ,

which implies

d(µ∗n, νΓ) = 0.

Thus n ≥ 1 is enough (recall that µ∗1 = µ).

2. (5pts)

Prove the upper bound lemma in Zd2.
Hint: the proof of the regular upper bound lemma can help

Solution 2.

Let µ : Zd2 → [0, 1] be a probability distribution and λ(t) = 1/2d, t ∈ Zd2, the uniform
distribution on Zd2. Fix n ∈ N. We claim that

d(µ∗n, λ) ≤ 1

2

√ ∑
k∈Zd

2\{0}

|µ̂(k)|2n.

By the L1 identity, we have

4d(µ∗n, λ)2 =
(∑
t∈Zd

2

|µ∗n(t)− λ(t)|
)2
.

Since λ(t) = 1/2d for all t ∈ Zd2, we have(∑
t∈Zd

2

|µ∗n(t)− λ(t)|
)2

= 22d
(∑
t∈Zd

2

λ(t)|µ∗n(t)− λ(t)|
)2
.

Using the definition of the inner product for the functions

f(t) := λ(t), and g(t) := |µ∗n(t)− λ(t)|, t ∈ Zd2,

and Cauchy-Schwartz Inequality we obtain(∑
t∈Zd

2

λ(t)|µ∗n(t)− λ(t)|
)2

= |〈f, g〉|2 ≤ ‖f‖22‖g‖22.
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The L2 norms here are
‖f‖22 =

∑
t∈Zd

2

λ(t)2 =
∑
t∈Zd

2

2−2d = 2−d

and by definition of g:

‖g‖22 =
∑
t∈Zd

2

|µ∗n(t)− λ(t)|2.

Hence we have proved

4d(µ∗n, λ)2 ≤ 2d
∑
t∈Zd

2

|µ∗n(t)− λ(t)|2 = 2d‖µ∗n − λ‖22

By Plancherel’s Theorem, we have that

2d‖µ∗n − λ‖22 = ‖µ̂∗n − λ‖22 = ‖µ̂∗n − λ̂‖22 =
∑
k∈Zd

2

|µ̂∗n(k)− λ̂(k)|2.

In Zd2 we have that

λ̂(k) =

{
1, k = 0;

0, k 6= 0.

On the other hand, as µ∗n is a probability distribution, the Fourier transform

µ̂∗n(0) =
∑
t∈Zd

2

µ∗n(t) = 1.

Hence the difference

µ̂∗n(k)− λ̂(k) =

{
0, k = 0;

µ̂∗n(k), k 6= 0.

Moreover, by the Convolution Theorem we have

µ̂∗n(k) = µ̂(k)n.

Thus ∑
k∈Zd

2

|µ̂∗n(k)− λ̂(k)|2 =
∑

k∈Zd
2\{0}

|µ̂(k)|2n.

Dividing by 4 and taking square roots from both sides gives the claim.

Further exercises: Attempt these before the tutorial, they are not marked and will
be discussed in the tutorial. If you cannot attend the tutorial, but want to do the attendance
marks, you can return your attempts to these before the tutorial to Kai. Here Kai will
not mark the further exercises, but will look if an attempt has been made and awards the
attendance mark for that week’s tutorial.

3.

Let µ = 1
2δ0 + 1

2δ1 in Z4. Find an upper bound for the mixing time nmix(1/100) for
µ, that is, after how many convolutions µ∗n is the total variation distance

d(µ∗n, λ) <
1

100
?

Solution 3.
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By the Upper Bound Lemma, we have

d(µ∗n, λ) ≤ 1

2

√ ∑
k∈Z4\{0}

|µ̂(k)|2n.

In the Week 7 exercise 2 (the measure ν there), we computed that

|µ̂(1)| =
√

2

2
, |µ̂(2)| = 0, |µ̂(3)| =

√
2

2
.

Hence

1

2

√ ∑
k∈Z4\{0}

|µ̂(k)|2n ≤ 1

2

√(√2

2

)2n
+
(√2

2

)2n
=
(√2

2

)n+1
.

Now, to have (√2

2

)n+1
<

1

100

after taking logarithms, we have

(n+ 1) log
(√2

2

)
< log

( 1

100

)
and as

√
2

2 < 1, the logarithm is negative, so

n >
log 100

log 2− log
√

2
− 1 ≈ 12.2877.

Hence nmix(1/100) ≤ 13.

4.

Prove the lower bound lemma (Theorem 5.2. in the lecture notes):
Let µ : Zp → [0, 1] be a probability distribution. Then for all n ∈ N we have

d(µ∗n, λ) ≥ 1

2

√√√√1

p

∑
k∈Zp\{0}

|µ̂(k)|2n.

Hint: the ideas of the upper bound lemma are useful here. Instead of using the Cauchy-
Schwarz inequality, try to use some function to get from the L1-identity form into the inner
product form and then use Plancherel’s theorem.

Solution 4.



6

So µ : Zp → [0, 1] is a probability distribution on Zp. Let n ∈ N. Consider:

4d(µ∗n, λ)2

= [L1− identity]
( p−1∑
k=0

|µ∗n(k)− λ(k)|
)2

≥ [Square of sums ≥ sum of squares]
( p−1∑
k=0

|µ∗n(k)− λ(k)|2
)

=
( p−1∑
k=0

(µ∗n(k)− λ(k))2
)

= [inner product] 〈µ∗n − λ, µ∗n − λ〉

= [Plancherel′s theorem]
1

p
〈µ̂∗n − λ, µ̂∗n − λ〉

=
1

p
〈µ̂∗n − λ̂, µ̂∗n − λ̂〉

=
1

p

p−1∑
l=0

(µ̂∗n(l)− λ̂(l))2

= [Convolution theorem]
1

p

p−1∑
l=0

(µ̂(l)n − λ̂(l))2

= [λ̂ = χ{0}, µ̂(0) = 1]
1

p

p−1∑
l=1

(µ̂(l)n)2

=
1

p

p−1∑
l=1

|µ̂(l)|2n

Hence we have:

4d(µ∗n, λ)2 ≥ 1

p

p−1∑
l=1

|µ̂(l)|2n

⇐⇒ 2d(µ∗n, λ) ≥

√√√√1

p

p−1∑
l=1

|µ̂(l)|2n

⇐⇒ d(µ∗n, λ) ≥ 1

2

√√√√1

p

p−1∑
l=1

|µ̂(l)|2n

�

5.

Let σ1, σ1σ2, σ1σ2σ3, . . . be the random walk on S52 driven by the probability distribution
µ describing the weak Borel shuffle (”µ ’chooses’ permutation σi at the ith step randomly
and attachs it to the end of the walk: σi . . . σi−1 → σ1 . . . σi). Write down the formula for
this measure µ. Then, let e ∈ S52 be the identity permutation. Apply the right convolution
µ ∗R µ in the group S52 to compute the probability

P(σ1σ2 = e).
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Hint: recall the first exercise sheet of the course for the weak Borel shuffle; right con-
volution can be found also from the lecture notes.

Solution 5.

Define a permutation

σk(j) =


k if j = 0;

j − 1 if 1 ≤ j ≤ k;

j if k < j ≤ 51;

Then define the random permutation σ ∈ S52 by choosing k ∈ {0, 1, . . . , 52 51} uniformly
with probability 1/52 and setting σ = σk. Hence the probability distribution on S52 can be
defined formally for all σ ∈ S52 as

µ(σ) =

{
1
52 , if σ = σk for some k = 0, 1, 2, . . . , 51;

0, otherwise.

We have that the probability
P(σ1σ2 = e) = µ ∗ µ(e)

By the definition of the right convolution we have

µ ∗ µ(e) =
∑
σ∈S52

µ(eσ−1)µ(σ)

We note that eσ−1 = σ−1 since e is the neutral element of the group S52. Since µ(σ) = 0
for all σ 6= σk for some k = 0, 1, 2, . . . , 51, we have∑

σ∈S52

µ(eσ−1)µ(σ) =
52∑
k=0

µ(σ−1
k )µ(σk).

When k = 0 we see that σ−1
0 = σ0 so

µ(σ−1
0 ) = µ(σ0) =

1

52
.

When k = 1 we see that σ−1
1 = σ1 so

µ(σ−1
1 ) = µ(σ1) =

1

52
.

However, if k ≥ 2, then σ−1
k can never be any of the permutations σ`, ` = 0, 1, 2, . . . , 51

because σ−1
k (k) = 0 and we have σ`(1) = 0 when ` ≥ 1, which would force k = 1. Thus

µ(σ−1
k ) = 0, for all k = 2, 3, . . . , 51.

This implies that

52∑
k=0

µ(σ−1
k )µ(σk) = µ(σ−1

0 )µ(σ0) + µ(σ−1
1 )µ(σ1) =

1

522
+

1

522
=

2

522
.

Thus we have

P(σ1σ2 = e) = µ ∗ µ(e) =
2

522
.


