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It 1s instructive to compare our derivation of Planck’s law with Einstein’s 1917
derivation.f They are both based on thermal equilibrium between the atoms and
the radiation field. In Einstein’s derivation the principle of detailed balance is
explicitly invoked; by contrast, in our derivation the physics of detailed balance is
contained in (2.153) which is an automatic consequence of the hermiticity of the
Hamiltonian used in the quantum theory of radiation. Note also thatin our deriva-
tion we do not distinguish between the contributions from spontaneous emission
and induced emission.

Although our attention has been focused in this section on the radiative transi-
tions between two atomic states, the technigues we have acquired can readily be
applied to a host of other phenomena, For instance, the reader may calculate the
cross section for the photoelectric effect (Problem 2-4) or the lifetime of the X°
hyperon (Problem 2-5):
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2-5. RAYLEIGH SCATTERING, THOMSON SCATTERING, AND THE
RAMAN EFFECT

Kramers-Heisenberg formula. Let us now examine the field-theoretic treatment of
the scattering of photons by atomic electrons. Before the scattering, the atom is
in state 4, and the incident photon is characterized by (k, €'®). After the scattering,
the atom is left in state B, and the outgoing photon is characterized by (k’, €=7).
For simplicity let us again consider a one-electron atom and neglect the spin-
magnetic-moment interaction.

The interaction Hamiltonian (2.94) is made up of a linear (A-p) term and a
quadratic (A- A) term. Since A changes the number of photons by one, A-p makes
no contribution in first order to a scattering process in which there is no ner change
in the number of photons, On the other hand, the A-A term contains aat, a'a,
aa, and atat, the first two of which do give nonvanishing contributions provided
that a* and a, respectively, represent the creation operator for (XK, @') and the
annihijation operator for (k, a), e.g., k', @' | ax . gt | K, &> = 1. Hence
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15ee, for example, Kittel (1958), pp. 175-176.
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where we have replaced e~ and e *"* by 1, since in the long-wave approximation
the atomic electron may be assumed to be situated at the origin. For the first-
order transition amplitude ¢*’(r) we have
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with @ == |k]cand &' == | k| ¢ as usual.

Although the A-p term makes no contribution in first order, the A-p ter.
taken rwice is of the same order as the A-A term, so far as powers of ¢ are cou-
cerned. Therefore we must treat a double A-p interaction and a single A- A interac-
tion simultaneously. The A« p interactionacting at ¢, can eitherannihilate theincident
photon (k, ) or create the outgoing photon (k', a’). When the A-p interaction
acts again at a time r, which is later than ¢, it must necessarily create the outgoing
photon (K', ) if the outgoing photon has not yet been created. Otherwise we
would end up with a zero matrix. element. On the other hand, if the outgoing
photon has already been created but the incoming photon has not yet been anaihi-
lated, the A-p interaction acting at t, >> #, must annrhilate the incoming photon
(k, ). Between t, and r, the atom is in state 7 which s, in general, different from
A4 and B. To summarize, two types of intermediate states are possible. In the first
type the atom is in state [/ and no photons are present. In the second type the atom
is in state { and both the incident and the outgoing photon are present.f
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Fig. 2-2. Space-time diagram for scattering of light,

All this can best be visualized if we draw a space-time diagram (Feynman dia-
gram) in which a solid line represents the atom, and a wavy line represents a photon.
Time is assumed to run upward (Fig. 2-2). For a type 1 process, represented by
Fig. 2-2(a), the atomic state 4 first absorbs the incident photon at ¢, and becomes
state I; subsequently at ¢, the atomic state / emits the outgoing photon and changes

B

iStrictly speaking, we should also consider the case where I stands for a continuum
state. The relevant matrix elemnent then corresponds to a photo-effect matrix element
{cf. Problem 2-4). In practice such “distant” intermediate states are not important be-
cause the energy denominators become large (cf. Eq. 2.160 below).
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into state B. For a type 2 process, represented by Fig. 2-2(b), state A first emits
the outgoing photon at ¢, and changes into state I; subsequently at ¢, state J absorbs
the incident photon (which has not yet been annihilated) and becomes state B.
In contrast, the lowest-order A+ A interaction, discussed earlier, is represented by
Fig. 2-2(c) (“seagull graph™).

As emphasized in the previous section, the emission and absorption of a photon
by an atomic electron are equivalent to interactions of the atomic electron with the
time-dependent potentials (2.102). Using this rule, we can readily write down the
second-order transition amplitude ¢'* (1) as follows:
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where we have made the dipole approximation and ignored a term that depends
on the artificial sudden turning of the perturbation (which is neghgible if the
energy conservation, E, — E, 4 ho' — hw = 0, is nearly satisfied). Combining
c(2) and ¢'*(¢), we have the transition probability
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To obtain the differential cross section we must divide this transition probability
by the flux density which is just ¢/V, since initially there is one photon tn the nor-
malization box of volume V. Finalily, we have for the differential cross section
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A formula equivalent to (2.162) was first obtained by H. A. Krainers and W.
Heisenberg using the correspondence principle in 1925; hence it is called the
Kramers-Heisenberg formula.

Rayleigh scattering. There are certain special cases of (2.162) worth examining in
detail. Let us first discuss the case in which 4 = B, he = he'. This situation
corresponds to elastic scattering of light. 1t is also called Rayleigh scattering
because this problem was treated classically by Lord Rayleigh. To simplify (2.162)
we rewrite €'*7 . using the commutation relation between x and p, the com-
pleteness of the intermedtate states /, and (2.124):1
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where w,, = (E; — E,)/#. We now see that the three terms in (2.162) combine
so that
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we obtain the Rayleigh cross section for w <€ w,4:
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Thus we see that the scattering cross section at long wavelengths varies as the inverse
Sfourth power of the wavelength (Rayleigh's law). For atoms in ordinary coloriess
gases the light wave corresponding to a typical @, is in the ultraviolet region.
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1The intermediate states 7 form a complete set only when we include the continuum
states as well as the discrete (bound) states.
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Hence the approximation o < w,, is good for w in the visible optical region.
This theory explains why the sky is blue and the sunset is red.

Thomson scattering. Let us now consider the opposite case in which the incident
photon energy is much larger than the atomic binding energy. It is then legitimate
to ignore the second and third term of (2.162), since ho(= hw') is much larger than
(p-€“°), (p-€“"),,/m, so the scattering is due solely to the matrix element corre-
sponding to the “seagull graph™ (Fig. 2-2c). Now the 8,,€*’-€'*? term is insensi-
tive to the nature of the binding of the atomic electron. The cross section we
compute in this case coincides with the cross section for the scattering of light by
a free (unbound) electron, first obtained classically by J. J. Thomson:

= ry € e, (2.168)

X

Fig. 2-3. Polarization in Thomson sCattering.

To study the polarization dependence of Thomson scattering we consider a
coordinate system in which €'* and k are taken along the x-and the z-axes respec-
tively, as shown in Fig. 2-3. The orientation of k’ is characterized by the spherical
coordinate angles & and ¢. The final polarization vector €' may be taken to be
normal to the shaded plane (the plane determined by k and ') for a = 1; ¢'*”
with " = 2 must then lie in the shaded plane. The Cartesian components of €/
are given by
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For initially unpolarized photons we may either integrate (2.170) over the angle
¢ and divide by 2z or evaluate

(§6) = TlaGO =0+ F3(6=5)] )

The two procedures are completely equivalent. Note that evenif the initial polariza-
tion vector is randomly oriented, the final photon emitted with cosf 5 4-1 is
polarized, since the differential cross section 1s 73/2 for €*? normal to the planc
determined by k and K’ and (+3/2) cos® 8 for €=” lying in the plane. It is remarkable
that the polarization of the scattered phioton is complete for § = »/2. We find,
then, that a completely unpolanized light beam, when scattered through 90°, results
in a 100 9% lnearly polarized beam whose polarization vector is normal to the
plane determined by k and k'.

If the initial photon is polarized but the final photon polarization is not observed,
we must sum over the two possible states of polarization. We have

da.

dQ
If the initial photon is not polarized and the final photon polarnzation is not
measured, we have
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The total cross section for Thomson scattering 1s
G = T = 6,65 % 107 o, (2.174)

As we emphasized earlier, this expression for the cross section is valid at photon
energies much greater than the atomic binding energy. However, the foregoing
derivation breaks down if the photon energy is so high that it actually becomes
comparable to the rest energy of the electron. We must then take into account
the relativistic nature of the electron, as we shall do in Section 4-4, discussing
Compton scattering.

The quantum-theoretic treatment of Rayleigh and Thomson scattering can be
compared to the classical counterpart. The scattering of an electromagnetic wave
¢an be visualized in classical mechanics by the following two-step process:

a) A bound electron oscillates when it is exposed to a time-dependent electric field.
) The oscillating charge 1n turn radiates an electromagnetic wave.

For a model of the electron bound by a force obeying Hooke’s law, the displace-
ment x of the electron in the presence of an applied electric field E e ' satisfies
the differential equation

X 4 weX = (efm)E, e™*, (2.175)
where w, is the characteristic angular frequency of the oscillator. Knowing that
the acceleration of the electron is given by
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Fig. 2-4. (a) Stokes’ line, (b) anti-Stokes’ line.

we can readily compute the total scattering cross section in a straightforward
manner.f We obtain

(2.177)

For v < @, we have the ! dependence of (2.167), whereas for o > w, wWe recover
the frequency independent cross section (2.174).

The Raman effect. The Kramers-Heisenberg formula (2.162) can also be applied
to inclastic scattering of hght in which © # " and A % B. In atomic physics
this phenomenon is called the Raman effect after C. V. Raman who observed a
shift in the frequency of radiation scattered in liquid solutions, an effect predicted
ecarlier by A. Smekal. If the initial atomic state A4 is the ground state, then the energy
of the final photon hw’ cannot be greater than the incident photon energy hw
because ko 4+ E, = ho' -} E, (Fig. 2-4a). This accounts for the presence of a
Stokes’ line in atomic spectra, a spectral line more reddish than that of incident
radiation. On the other hand, if the atom 1s in an excited state, ©” can be larger
than o (Fig. 2-4b). This lcads to an anti-Stokes’ line which is more violet than
the spectral line of the incident radiation.

2-6. RADIATION DAMPING AND RESONANCE FLUORESCENCE

The Kramers-Heisenberg formula we derived in the previous section is clearly
inadequate if Ao becomes equal to E, — £, for some state J The cross section
according to (2.162) 1s then infinite, a2 phenomenon not observable in nature, of
course. It is nevertheless true that the scattering cross section becomes very large
and goes through a very sharp maximum in the neighborhood of £, — E; = ho.
This is a phenomenon known as resonance scattering of light or resonance
fuorescence.

Where did our theory go wrong? When we use the second-order time-dependent
perturbation theory, we assumed that the intermediate state [ is a stationary state
with an infinitely long lifetime. In other words, we did not take into account the

}Panofsky and Phillips (1955), p. 326; Jackson (1962), pp. 602-604.



